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Abstract. Let X be a metric space equipped with a doubling measure. We consider weights
w(x) = dist(x,E)−α, where E is a closed set in X and α ∈ R. We establish sharp conditions,
based on the Assouad (co)dimension of E, for the inclusion of w in Muckenhoupt’s Ap classes of
weights, 1 ≤ p < ∞. With the help of general Ap-weighted embedding results, we then prove
(global) Hardy–Sobolev inequalities and also fractional versions of such inequalities in the setting
of metric spaces.

1. Introduction

Muckenhoupt’s Ap-weights are important tools in mathematical analysis. Their characterizing
property in Rn is that the Hardy–Littlewood maximal operator is bounded in the weighted space
Lp(w dx), for 1 < p <∞, if and only if the weight w is an Ap-weight; see e.g. [11]. Muckenhoupt’s
Ap-weights are also examples of p-admissible weights in the sense of [15], and hence Ap-weighted
Euclidean spaces satisfy the basic assumptions that are often used in the theory of analysis on
metric spaces: the doubling property and a p-Poincaré inequality. Due to the importance of
Ap-weighted function spaces, various norm inequalities have been established for Ap-weights both
in Euclidean spaces and in more general settings; see, for instance [11, 29, 30, 31].

On the other hand, Hardy and Hardy–Sobolev -type inequalities are important examples of
inequalities that in particular yield embeddings between weighted function spaces. When X is a
metric space, the weights in these inequalities are of the type δ−αE , α ∈ R, where δE(x) = dist(x,E)
denotes the distance from a point x ∈ X to a closed set E ⊂ X. We refer to [25] and [23] for
recent results related to Hardy–Sobolev -inequalities in Rn and Hardy inequalities in metric spaces,
respectively, and to [9, 19] and [8] for fractional counterparts of such inequalities, respectively.

Now, two natural questions arise:

(i) When does such a weight δ−αE belong to (some) Muckenhoupt Ap-class?
(ii) Can the general theory of Ap-weighted inequalities be used to derive certain Hardy and

Hardy–Sobolev -inequalities?

As far as we know, neither of these questions has been given a complete or comprehensive answer,
although there are several partial results concerning question (i), mainly in Rn but also in more
general metric spaces; we will comment on some of these more precisely in Section 3. On the
other hand, some of the results of Horiuchi [17, 18] are closely related to question (ii) in Rn.

In this paper, we provide a characterizing answer to question (i) with high generality. In an
Ahlfors Q-regular metric space X (and hence in particular in Rn with Q = n) our result reads as
follows:

Theorem 1.1. Assume that X is a Q-regular metric space. Let ∅ 6= E ⊂ X be a closed set with
dimA(E) < Q and let α ∈ R and w = δ−αE . Then

(A) w ∈ Ap, for 1 < p <∞, if and only if (1− p)(Q− dimA(E)) < α < Q− dimA(E) .
(B) w ∈ A1 if and only if 0 ≤ α < Q− dimA(E) .
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Here dimA(E) is the (upper) Assouad dimension of the set E. In the more general setting
of a non-Ahlfors-regular space X we obtain in Corollary 3.7 a corresponding result in terms of
the (lower) Assouad codimension. In particular, these characterizations show that the Assoaud
dimension and codimension are certainly the correct notions of dimension to consider in this
context. The definitions of these dimensions and other relevant concepts, as well as other prelim-
inaries such as our assumptions on the metric space X, will be reviewed in Section 2. Section 3
then contains all of our results related to the Ap-properties of the distance functions.

Concerning question (ii), recall that in Rn the global Hardy–Sobolev inequality, for exponents
1 ≤ p ≤ q ≤ np/(n− p) <∞ and β ∈ R and with respect to a closed set E ⊂ Rn, reads as

(1)

(∫
Rn

|f(x)|q δE(x)(q/p)(n−p+β)−n dx

)1/q

≤ C

(∫
Rn

|∇f(x)|p δE(x)β dx

)1/p

.

When the closed set E ⊂ Rn is given, the main question is whether there exists a constant
C > 0 such that this inequality holds for every f ∈ C∞0 (Rn). Notice that inequality (1) includes
many well-known special cases: for 1 ≤ p < n, q = np/(n − p) and β = 0 we recover the usual
Sobolev inequality, the case p = q is the (weighted) (p, β)-Hardy inequality, and for E = {0}
these inequalities are known as Caffarelli–Kohn–Nirenberg inequalities.

We consider metric space versions of Hardy–Sobolev inequalities in Section 6. Natural test
functions in this setting are Lipschitz functions with bounded support, and then |∇f | is replaced
with an upper gradient of f . In a Q-regular metric space X, the exponent Q > 1 plays the same
role as n does in Rn, and in this case the closed set E ⊂ X is assumed to satisfy

(2) dimA(E) < min

{
q

p
(Q− p+ β) , Q− β

p− 1

}
.

In a non-regular space X, the Assouad dimension is again replaced with the codimension, and
Q > 1 is assumed to be such that the measure lower bound µ(B(x, r)) ≥ CrQ holds for all x ∈ X
and all r > 0.

The proofs of these Hardy–Sobolev inequalities are based on the knowledge of the Ap-properties
of the distance weights and the general theory of Ap-weighted inequalities that has been developed
in the setting of metric spaces by Pérez and Wheeden in [31] and that will be discussed with more
details in Section 4. Our main tool concerning general Ap-weighted theory is Theorem 4.2, which
is essentially a combination of [31, Theorem 2.1] and [31, Theorem 2.4]. The first of these two is, in
turn, a metric space generalization of an Euclidean result due to Muckenhoupt and Wheeden [29]
giving single weight control for the Riesz potential Is in terms of a maximal operator, while the
second result gives a two weight Lp–Lq control for this maximal operator; a Euclidean version of
the latter was proved by Pérez [30, Theorem 1.1].

In addition, we establish in Section 5 fractional versions of Hardy–Sobolev inequalities in metric
spaces, again based on the general theory from Section 4. In the fractional case, with order of
smootheness 0 < s < 1, the first term in the minimum in (2) is replaced with q

p
(Q− sp+ β) and

the measure lower bound µ(B(x, r)) ≥ CrQ is assumed to hold with Q > s. We also show the
optimality of the bound dimA(E) < q

p
(Q−sp+β) for fractional inequalities; see Proposition 5.5. In

Rn, the optimality of the corresponding bound is well-understood for non-fractional inequalities,
cf. [25]. On the contrary, we do not know whether the bound dimA(E) < Q− β

p−1 is really needed

in the case of fractional inequalities, but since this bound can be seen to be necessary at least in
some instances of the non-fractional inequalities, it is not possible to remove this bound from the
general Ap-approach. See Remarks 5.6 and 6.3 for more discussion on these dimensional bounds.

In the special case X = Rn, our results concerning the Hardy–Sobolev inequality (1) are
essentially the same as the corresponding results from [25] when β ≤ 0. On the other hand, when
β > 0 and dimA(E) < n − 1, our results are weaker than the results in [25], but when β > 0
and dimA(E) ≥ n− 1, we actually obtain an improvement to the results in [25]; see Remark 6.2.
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In more general metric spaces, all of our results concerning Hardy–Sobolev inequalities and their
fractional versions appear to be new in the case q > p.

Let us also remark that in this work we only consider global Hardy–Sobolev inequalities, that
is, the integrations are taken over the whole space X. In these inequalities the set E needs to
be rather “thin”, which is illustrated by the fact that there is an upper bound for the dimension
of E. In addition, in this case the test functions need not vanish in E. In the other typical
instance of Hardy–Sobolev inequalities one assumes that E is “thick”, whence there in particular
is a lower bound for the dimension of E, and then the test functions are assumed to have a
compact support in the open set Ω = X \E. See for instance [25] for the Euclidean case of these
inequalities and more comments related to the distinction between the “thin” and “thick” cases.
Our characterization of the distance-type Ap-weights in fact shows that the present approach to
Hardy–Sobolev -inequalities can not be applied in the “thick” case, where the natural dimensional
bounds for the inequalities are not compatible with the bounds for the Ap-properties of distance
functions.

In conclusion, the present Ap-weight approach to Hardy–Sobolev inequalities certainly has
limitations, especially when dealing with weight exponents β > 0, and it can not be applied in
the “thick” case of these inequalities, where different tools need to be used. Nevertheless, as a
positive answer to question (ii) we see that in many cases — in particular in the most important
case β = 0 of the global Hardy–Sobolev -inequalities — the present approach indeed yields
optimal results for global Hardy–Sobolev -inequalities and also for the corresponding fractional
inequalities both in Rn and in more general metric spaces.

2. Preliminaries on metric spaces

We assume throughout this paper that X = (X, d, µ) is a metric measure space (with #X ≥ 2),
where µ is a Borel measure supported on X such that 0 < µ(B) <∞ for all (open) balls

B = B(x, r) := {y ∈ X : d(x, y) < r}

with x ∈ X and r > 0. We make the tacit assumption that each ball B ⊂ X has a fixed center
xB and radius rad(B), and thus notation such as `B = B(xB, ` rad(B)) is well-defined for all
` > 0. When E,F ⊂ X, we let diam(E) denote the diameter of E and dist(E,F ) is the distance
between the sets E,F ⊂ X, and in particular we use δE(x) = dist(x,E) = dist({x}, E) to denote
the distance from a point x ∈ X to the set E.

We also assume throughout that µ is doubling, that is, there is a constant CD > 0 such that
whenever x ∈ X and r > 0, we have

(3) µ(B(x, 2r)) ≤ CD µ(B(x, r)).

Iteration of (3) shows that if µ is doubling, then there exist an exponent σ > 0 and a constant
C∗ > 0 such that the quantitative doubling condition

(4)
µ(B(y, r))

µ(B(x,R))
≥ C∗

( r
R

)σ
holds whenever B(y, r) ⊂ B(x,R) ⊂ X; see [3, Lemma 3.3].

In some of our results we also need to assume that for a given exponent η > 0 there is a constant
C∗ = C∗(X, η) > 0 such that the (quantitative) reverse doubling condition

(5)
µ(B(y, r))

µ(B(x,R))
≤ C∗

( r
R

)η
holds whenever B(y, r) ⊂ B(x,R) ⊂ X. Notice that under this condition µ({x}) = 0 for all x ∈ X
and the space X is necessarily unbounded, since estimate (5) holds for arbitrary large radii R.
If the space X is unbounded and connected (and µ is doubling, as we assume throughout), then
there exists some η > 0 such that (5) holds whenever B(y, r) ⊂ B(x,R) ⊂ X; cf. [3, Corollary 3.8].
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The space X = (X, d, µ) is said to be Ahlfors Q-regular (or simply Q-regular), for Q > 0, if
there is a constant C ≥ 1 such that

C−1rQ ≤ µ(B(x, r)) ≤ CrQ

for all x ∈ X and every 0 < r < diam(X). Notice that if X is Q-regular, then µ is doubling, and
moreover (5) holds for all η ≤ Q if X is unbounded. The Ahlfors Q-regularity of the space X is
equivalent to the requirement that there is a constant C ≥ 1 such that

C−1rQ ≤ HQ(B(x, r)) ≤ CrQ

for all x ∈ X and every 0 < r < diam(X), where HQ is the Q-dimensional Hausdorff measure
on X. Consult, for instance, [27, Section 1.4] for the definition of the Hausdorff measure and the
above equivalence concerning Q-regularity.

If the space X is not Alhfors Q-regular, then it is often convenient to describe the sizes of
the subsets of X in terms of codimensions rather than dimensions. For instance, the Hausdorff
codimension of E ⊂ X (with respect to µ) is the number

co dimH(E) = sup
{
q ≥ 0 : Hµ,q

R (E) = 0
}
,

where

Hµ,q
R (E) = inf

{∑
k

rad(Bk)
−qµ(Bk) : E ⊂

⋃
k

Bk, rad(Bk) ≤ R

}
is the Hausdorff content of codimension q; if µ(E) > 0, then we set co dimH(E) = 0. If X is
Q-regular, then we have for all E ⊂ X that Q − co dimH(E) = dimH(E), the usual Hausdorff
dimension.

For this paper, the most important notion of (co)dimension is the Assouad (co)dimension.
When E ⊂ X, the (upper) Assouad dimension of E, denoted dimA(E) (or simply dimA(E), as
in the Introduction), is the infimum of exponents s ≥ 0 for which there is a constant C ≥ 1 such
that for all x ∈ E and every 0 < r < R < 2 diam(X), the set E ∩ B(x,R) can be covered by at
most C(r/R)−s balls of radius r. We remark that dimA is the “usual” Assouad dimension found
in the literature, and we refer to [26] for its basic properties and a historical account and to [10]
(and the references therein) for more recent results related to the (upper) Assouad dimension.

The corresponding codimension, the (lower) Assouad codimension co dimA(E), is defined in
terms of the measures of the (open) r-neighborhoods

Er = {x ∈ X : dist(x,E) < r}
of E ⊂ X. Namely, co dimA(E) is the supremum of all ρ ≥ 0 for which there exists a constant
C ≥ 1 such that

µ(Er ∩B(x,R))

µ(B(x,R))
≤ C

( r
R

)ρ
for every x ∈ E and all 0 < r < R < 2 diam(X). Notice in particular that co dimA(E) > 0
implies that µ(E) = 0, by the Lebesgue differentiation theorem; see e.g. [14, Theorem 1.8]. If X
is Q-regular, then it is not hard to see that dimA(E) = Q − co dimA(E) for all E ⊂ X, cf. [21,
(3.11)]. On the other hand, if E ⊂ X is Ahlfors λ-regular (as a subspace of X, endowed with the
induced metric and the λ-dimensional Hausdorff measure Hλ), then dimH(E) = dimA(E) = λ;
see e.g. [27, Section 1.4.4].

Let us remark here that the terminology of upper Assouad dimension and lower Assouad
codimension is due to the fact that there also exists a corresponding “dual” pair, i.e., the lower
Assouad dimension and the upper Assouad codimension; see [21]. Neither of these two will be
needed in this paper, but they play an important role in the “thick” cases of Hardy and Hardy–
Sobolev inequalities; see [23, 25].

When E ⊂ X, a function u : E → R is said to be (L-)Lipschitz, if

|u(x)− u(y)| ≤ Ld(x, y) for all x, y ∈ E .
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We denote the set of all Lipschitz functions u : E → R by Lip(E). In addition, Lip0(X) ⊂ Lip(X)
denotes the set of all Lipschitz functions u ∈ Lip(X) for which there exists some ball B such that
u(x) = 0 for all x ∈ X \B.

When B is a ball in X, the integral average of a function u ∈ L1(B) is

uB :=
1

µ(B)

∫
B

u dµ =:

∫
B

u dµ .

A weight is a measurable function w on X such that w(x) > 0 for µ-almost every x ∈ X and∫
B
w dµ <∞ whenever B ⊂ X is a ball. We write w(E) =

∫
E
w dµ if E ⊂ X is a measurable set

and w is a weight. A weight w belongs to the Muckenhoupt class Ap of weights (i.e. w ∈ Ap), for
1 ≤ p <∞, if there is a constant A > 0 such that, for every ball B in X,

(6)

(∫
B

w dµ

)(∫
B

w−1/(p−1) dµ

)p−1
≤ A if p > 1 ,

and

(7)

(∫
B

w dµ

)
ess sup
y∈B

1

w(y)
≤ A if p = 1 .

It follows from these Ap conditions and Hölder’s inequality that Muckenhoupt weights satisfy the
following strong doubling property: if 1 ≤ p <∞ and w ∈ Ap, then

(8) w(B) ≤ A

(
µ(B)

µ(E)

)p
w(E)

whenever E is a measurable subset of a ball B ⊂ X with µ(E) > 0. In particular, the measure
w dµ satisfies the doubling condition (3). When 1 < p < ∞, it follows immediately from the
Ap-condition (6) for a weight w that

(9) w ∈ Ap ⇐⇒ w1/(1−p) ∈ Ap/(p−1) .
A weight w is said to belong to the Muckenhoupt class A∞ (i.e. w ∈ A∞) if there are constants

C > 0 and δ > 0 such that

w(E) ≤ C

(
µ(E)

µ(B)

)δ
w(B)

whenever E is a measurable subset of a ball B ⊂ X. By [32, Chapter I, Theorem 15], it holds for
every 1 < p < q <∞ that

(10) A1 ⊂ Ap ⊂ Aq ⊂ A∞.

It is also well known that in the Euclidean case with the Lebesgue measure A∞ =
⋃

1≤p<∞Ap. In
a metric space X this equality is valid under the assumptions that the measure µ is doubling and
µ(B(x, r)) increases continuously with r for each x ∈ X; we refer to [32, Chapter I, Theorem 18].
However, there exist metric spaces where the class of A∞-weights is strictly larger than the union⋃

1≤p<∞Ap; see [22] and [32].

3. Powers of distance functions as weights

In this section we investigate the connections between the (lower) Assouad codimension of a
closed set E ⊂ X and the Ap-properties of the powers of the distance function δE = dist(·, E).
Recall that X is a metric space equipped with a doubling mesure µ; no further assumptions on
X are needed in this section.

Definition 3.1. We say that a closed set ∅ 6= E ⊂ X satisfies the Aikawa condition with an
exponent α ≥ 0 and a constant C ≥ 1 if inequality

(11)

∫
B(x,r)

δE(y)−α dµ(y) ≤ Cr−αµ(B(x, r))
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holds for every x ∈ E and all 0 < r < 2 diam(X). We interpret the integral to be +∞ if α > 0
and E has a positive measure.

Remark 3.2. Let ∅ 6= E ⊂ X be a closed set. The lower Assouad codimension of E can be
characterized as the supremum of all exponents α ≥ 0 for which E satisfies the Aikawa condition
with some constant C ≥ 1. In particular, the Aikawa condition holds for all α < co dimA(E) (for
α ≤ 0 this is trivial). This characterization is essentially [24, Theorem 5.1]. Notice that in [24] the
relevant radii are always bounded from above by diam(E), whereas presently the upper bound
for radii is 2 diam(X) both in the definition of co dimA and in the above Aikawa condition (11).
Nevertheless, the proof from [24] works also in this case with obvious minor modifications.

We also remark that if α < co dimA(E) and µ(E) = 0, it follows from (11) that the function
w = δ−αE = dist(·, E)−α is a weight. Since co dimA(E) > 0 implies that µ(E) = 0, it in particular
follows that the function w is a weight if 0 ≤ α < co dimA(E).

A concept of dimension defined via integrals as in (11) was used by Aikawa in [1] for subsets
of Rn. Thus, e.g. in [24], where the interest originated from such integral estimates, the lower
Assouad codimension was called the Aikawa codimension.

The following lemma, essentially [23, Lemma 2.2], records the fact that the Aikawa condi-
tion (11) enjoys self-improvement. This result is a straight-forward consequence of the famous
self-improvement result for reverse Hölder inequalities, which in Rn is due to Gehring [12]. The
proof in [23] is based on a metric space version of the Gehring lemma; see e.g. [3, Theorem 3.22].
We emphasize that besides the doubling property of µ no other assumptions are required for the
space X in Lemma 3.3.

Lemma 3.3. Let ∅ 6= E ⊂ X be a closed set that satisfies the Aikawa condition with an exponent
α > 0 and a constant C0 ≥ 1. Then there exist δ > 0 and C ≥ 1, depending only on the given
data, such that E satisfies the Aikawa condition with the exponent α + δ and the constant C.

The following theorem is our main result concerning the Ap-properties of distance weights.
In [2], corresponding results were obtained in metric spaces, but using a completely different
approach and under the much stronger assumption that both X and E satisfy Ahlfors regularity
conditions; see e.g. [2, Theorems 6 and 7].

Theorem 3.4. Let ∅ 6= E ⊂ X be a closed set and let α ∈ R and w = δ−αE . Then the following
statements hold.

(A) If co dimA(E) > α ≥ 0, then w ∈ Ap for all 1 ≤ p ≤ ∞.
(B) If α < 0 and 1 < p <∞ are such that

co dimA(E) >
α

1− p
,

then w ∈ Ap.
(C) If co dimA(E) > max{0, α}, then w ∈

⋃
1≤p<∞Ap.

Proof. (A) Since A1 ⊂ Ap for all p ≥ 1, it suffices to show that w ∈ A1, i.e., that inequality (7)
holds for all balls in X.

To this end, fix a ball B = B(x, r) in X; without loss of generality, we may assume that
0 < r < 2 diam(X). Assume first that 2B ∩ E 6= ∅. Then there is z ∈ E such that B ⊂ B(z, 3r).
By Remark 3.2, inequality (11) holds for the exponent α. Using this inequality and the doubling
property of µ, we obtain∫

B(x,r)

w(y) dµ(y) ≤ 1

µ(B(x, r))

∫
B(z,3r)

δE(y)−α dµ(y)

≤ Cr−α
µ(B(z, 3r))

µ(B(x, r))
≤ Cr−α .

(12)
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Since α ≥ 0, we have for every y ∈ B \ E that

1

w(y)
= δE(y)α ≤ d(y, z)α ≤ 3αrα .

Combining (12) and the above estimate and using the fact that µ(E) = 0, we see that inequal-
ity (7) holds in the case 2B ∩ E 6= ∅.

On the other hand, if 2B ∩ E = ∅, then

(13) δE(y)/3 ≤ dist(B,E) ≤ δE(y)

for all y ∈ B. It follows that(∫
B(x,r)

w(y) dµ(y)

)
ess sup
y∈B

1

w(y)
≤ C dist(B,E)−α dist(B,E)α ≤ C ,

and thus inequality (7) holds also in the case 2B ∩ E = ∅. This proves that w ∈ A1, as desired.

(B) From (A) it follows that δ
−α/(1−p)
E ∈ Ap̃ for all 1 ≤ p̃ ≤ ∞. In particular,

δ
−α/(1−p)
E ∈ Ap/(p−1) ,

which by (9) implies that w = δ−αE ∈ Ap.
The final statement (C) follows from a combination of parts (A) and (B). �

Next we turn to partial converses of the statements (A) and (B) in Theorem 3.4. The following
Theorem 3.5 reveals a surprising self-improvement phenomenon for the Ap-properties of functions
δ−αE , where α > 0 and E is porous. Recall that a set E ⊂ X is porous, if there is a constant
0 < c < 1 such that for every x ∈ E and all 0 < r < 2 diam(X) there exists a point y ∈ X such
that B(y, cr) ⊂ B(x, r) \ E.

Theorem 3.5. Let ∅ 6= E ⊂ X be a closed and porous set, and let α > 0 and w = δ−αE . Then the
following conditions are equivalent.

(A) co dimA(E) > α ;
(B) w ∈ A1 ;
(C) w ∈ Aq, for some 1 < q <∞.

Proof. By Theorem 3.4, condition (A) implies both conditions (B) and (C), and from the inclusions
in (10) it follows that (B) implies (C). Thus it suffices to show that (C) implies (A).

Let us hence assume that w ∈ Aq for some 1 < q < ∞. By the Aq-condition (6), there is a
constant C > 0 such that(∫

B

w(y) dµ(y)

)(∫
B

w(y)−1/(q−1) dµ(y)

)q−1
≤ C

for every ball B in X. Now fix x0 ∈ E and 0 < r0 < 2 diam(X), and let B = B(x0, r0). Since E
is porous, there is a ball B(x, r) = B′ ⊂ B such that r = cr0/2 and dist(B′, E) ≥ r/2, and thus,
using also the doubling property (4), we obtain(∫

B

w(y)−1/(q−1) dµ(y)

)q−1
≥
(
µ(B(x, r))

µ(B(x0, r0))

)q−1(∫
B′
w(y)−1/(q−1) dµ(y)

)q−1
≥ C

(∫
B′
rα/(q−1) dy

)q−1
≥ Crα.

Combining the previous two estimates, we obtain∫
B

δE(y)−α dµ(y) =

∫
B

w(y) dµ(y) ≤ Cµ(B)

(∫
B

w(y)−1/(q−1) dµ(y)

)1−q

≤ Cµ(B)r−α ≤ Cµ(B)r−α0 ,
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showing that the closed set E satisfies the Aikawa condition (11) with the exponent α > 0. By
the self-improvement of the Aikawa condition, Lemma 3.3, there then exists δ > 0 such that the
Aikawa condition holds also with the exponent α + δ, and so it follows from Remark 3.2 that
co dimA(E) ≥ α + δ > α, proving condition (A). �

Remark 3.6. To see that a converse to Theorem 3.4(B) holds, when ∅ 6= E ⊂ X is a closed
and porous set, we assume that α < 0 and 1 < p < ∞ are such that w = δ−αE ∈ Ap. By the
equivalence in (9), we then have that

δ
−α/(1−p)
E = w1/(1−p) ∈ Ap/(p−1) ,

and so it follows from Theorem 3.5 that co dimA(E) > α/(1− p).

Corollary 3.7. Let ∅ 6= E ⊂ X be a closed and porous set, and let α ∈ R and w = δ−αE . Then

(A) w ∈ Ap, for 1 < p <∞, if and only if (1− p) co dimA(E) < α < co dimA(E) .
(B) w ∈ A1 if and only if 0 ≤ α < co dimA(E) .

Proof. All the claims, except the necessity of the condition α ≥ 0 in part (B), follow from
Theorems 3.4 and 3.5, Remark 3.6, and the fact that co dimA(E) > 0 for porous sets (cf. [21,
Remark 3.6]). The remaining claim can be justified as follows. If α < 0, then for all balls
B = B(x, r) with x ∈ E it holds that

∫
B
w dµ ≥ cr−α, with c > 0 independent of x and r, while

ess sup
y∈B

1

w(y)
=∞ .

Hence the A1 condition (7) is clearly not satisfied, and so we conclude that w ∈ A1 is possible
only when α ≥ 0. �

If X is Q-regular, then co dimA(E) = Q− dimA(E) for all E ⊂ X, and moreover a set E ⊂ X
is porous if and only if dimA(E) < Q; see e.g. [4, Lemma 3.12]. Hence Theorem 1.1 follows
immediately from Corollary 3.7. In particular, in the Euclidean space Rn with the Lebesgue
measure, we obtain the following Corollary 3.8. Similar characterizations were obtained already
by Horiuchi in [18, Lemma 2.2]. However, in [18] the dimensional condition for E ⊂ Rn was
formulated using the so-called “P (s)-property”. This property was only recently shown to be
intimately connected with the Assouad dimension, see [25, Theorem 3.4].

Corollary 3.8. Let ∅ 6= E ⊂ Rn be a closed set with dimA(E) < n, and let α ∈ R and w = δ−αE .
Then

(A) w ∈ Ap, for 1 < p <∞, if and only if (1− p)(n− dimA(E)) < α < n− dimA(E) .

(B) w ∈ A1 if and only if 0 ≤ α < n− dimA(E) .

Corollary 3.8 is also closely related to [6, Lemma 3.3], which states that if a compact set
∅ 6= E ⊂ Rn is a subset of an Ahlfors λ-regular set, for 0 ≤ λ < n, and if 1 < p <∞ and α ∈ R
are such that

(1− p)(n− λ) < α < n− λ ,
then w = δ−αE is an Ap weight in Rn. Recall that a compact set ∅ 6= F ⊂ Rn is Ahlfors λ-regular
if there is C ≥ 1 such that

C−1rλ ≤ Hλ(F ∩B(x, r)) ≤ Crλ

for each x ∈ F and all 0 < r ≤ diam(F ) (or for all r > 0 if F consists of a single point), and that
then dimA(F ) = dimH(F ) = λ. In particular, if a closed set E ⊂ Rn is a subset of an Ahlfors
λ-regular set, then dimA(E) ≤ λ.

Finally, let us note that Corollary 3.8 naturally contains the well known results for the particular
case E = {0} ⊂ Rn, in which dimA(E) = 0. Indeed, let w(x) = |x|−α for x ∈ Rn. Then it follows
from Corollary 3.8 that w ∈ A1 if and only if 0 ≤ α < n, and w ∈ Ap, for 1 < p <∞, if and only
if (1− p)n < α < n. These same bounds can be found, for instance, in [33, p. 229, p. 236].
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4. Boundedness results for Riesz potentials

Throughout the remainder of this paper, the following assumptions are maintained:

(S1) X is an unbounded metric space, equipped with a doubling measure µ such that

µ({x}) = 0 , for every x ∈ X .

(S2) The annulus B(x,R) \B(x, r) is non-empty for each x ∈ X and every 0 < r < R <∞.

We remark that (S1) follows from the reverse doubling condition (5) with any η > 0. On the
other hand, from condition (S2) it follows that the radius rad(B) = r of a ball B = B(x, r) in X
is uniquely determined and inequality rad(B1) ≤ 2 rad(B2) holds for all balls B1 ⊂ B2 ⊂ X.

When s > 0, the Riesz potential Isf = Is(f) of a measurable function f ≥ 0 is defined by

(14) Is(f)(x) =

∫
X

f(y)d(x, y)s

µ(B(x, d(x, y)))
dµ(y) , x ∈ X .

Since µ({x}) = 0 for each x ∈ X, we can tacitly restrict the above integration to the set X \ {x}
in order to avoid difficulties when x = y.

The following theorem gives a sufficient condition for the validity of certain two weight inequal-
ities for the Riesz potentials, where the weights are powers of a distance function.

Theorem 4.1. Let s > 0. Assume that the reverse doubling condition (5) holds with the exponent
η = s and that there is Q > s such that µ(B) ≥ c rad(B)Q for all balls B ⊂ X.

Let ∅ 6= E ⊂ X be a closed set, and let 1 < p ≤ q ≤ Qp/(Q− sp) <∞ and β ∈ R be such that

(15) co dimA(E) > max

{
Q− q

p
(Q− sp+ β) ,

β

p− 1

}
.

Then there is a constant C > 0 such that inequality

(16)

(∫
X

Is(f)(x)q δE(x)(q/p)(Q−sp+β)−Q dµ(x)

)1/q

≤ C

(∫
X

f(x)p δE(x)β dµ(x)

)1/p

holds for all measurable functions f ≥ 0 in X.

The optimality of the dimensional assumption (15) in Theorem 4.1 is discussed below in Re-
marks 5.6 and 6.3. The proof of Theorem 4.1 is based on Theorem 3.4 and general two weight
embedding results for Riesz potentials that can be found in the work of Pérez and Wheeden [31].
More specifically, we need the following Theorem 4.2 which is formulated here in a slightly wider
generality that we actually need; the wider formulation is of possibly independent interest. The
proof of Theorem 4.2 consists mainly of checking that the assumptions for the results in [31] are
satisfied.

Theorem 4.2. Let s > 0. Assume that the reverse doubling condition (5) holds with the exponent
η = s and that there is Q > s such that µ(B) ≥ c rad(B)Q for all balls B ⊂ X with rad(B) ≥ 1.
Let 0 < t < p ≤ q <∞, and let w and v be weights such that

w ∈
⋃

1≤P<∞

AP , and h = vt/(t−p) ∈
⋃

1≤P<∞

AP .

If there exists a constant K > 0 such that inequality

(17)
rad(B)sw(B)t/qh(B)(p−t)/p

µ(B)
≤ K

holds for all balls B ⊂ X, then Is is bounded from Lp/t(v dµ) to Lq/t(w dµ).
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Proof. Fix f ∈ Lp/t(v dµ). We shall first apply [31, Theorem 2.1] that is a metric space general-
ization of the Euclidean result of [29]. The former result implies that inequality

(18)

(∫
X

(Isf)q/tw dµ

)t/q
≤ C

(∫
X

(Mψf)q/tw dµ

)t/q
holds with C > 0 independent of f , where ψ(B) = rad(B)s/µ(B) for all balls B ⊂ X and the
generalized maximal function Mψf at x ∈ X is defined by Mψf(x) = supB3x ψ(B)

∫
B
|f | dµ; i.e.,

the supremum is taken over all balls B ⊂ X that contain the point x. Now, the assumptions
of [31, Theorem 2.1] are satisfied by the following several facts. Their somewhat tedious but
straight-forward proofs are merely indicated below and details are left to the interested reader.

From (14) we see that the Riesz potential Is is an integral operator (transform) associated with
the kernel function

K(x, y) =
d(x, y)s

µ(B(x, d(x, y)))
, x, y ∈ X , x 6= y .

Using both doubling (4) and reverse doubling (5) conditions of µ, the latter with η = s, one
can check that for every number c2 > 1 there exists c1 > 1 such that K(x, y) ≤ c1K(x′, y) if
0 < d(x′, y) ≤ c2 d(x, y) and K(x, y) ≤ c1K(x, y′) if 0 < d(x, y′) ≤ c2 d(x, y). We recall from (S2)
that the annuli of X are non-empty. Using this and the doubling condition of µ one shows that
for every 0 < c < 1 there exists Λ > 1 such that

(19) Λ−1 ψ(B) ≤ ϕ(B) := sup{K(x, y) : x, y ∈ B and d(x, y) ≥ c rad(B)} ≤ Λψ(B)

whenever B = B(xB, rad(B)) ⊂ X. Inequality (19) shows that (for a fixed 0 < c < 1) the maximal
function Mψf is pointwise comparable with Mϕf : x 7→ supB3x ϕ(B)

∫
B
|f | dµ that appears in [31,

Theorem 2.1]. The penultimate fact is that (µ, ϕ) satisfies [31, (16)(a)–(c)] with τ(B) = µ(B) for
all balls B ⊂ X; here one applies the doubling condition of µ and the estimates in (19). The final
fact required for (18) is that w belongs to a certain “dyadic A∞-class” Ady

∞(µ). In order to verify
this condition, we refer to [31, p. 14] and recall that the assumption w ∈

⋃
1≤P<∞AP implies the

strong doubling condition (8) for some exponent P ≥ 1. Hence, we can conclude that inequality
(18) holds.

The second step of the proof is to show that the right-hand side of (18) is, in turn, dominated
by the Lp/t(v dµ)-norm of f , i.e., there is C > 0 such that

(20)

(∫
X

(Mψf)q/tw dµ

)t/q
≤ C

(∫
X

|f |p/tv dµ
)t/p

.

This inequality follows from [31, Theorem 2.4], but again the validity of the assumptions of this
theorem needs to be checked. We will now go briefly through the necessary facts.

First, the assumed inequality (17) is required in [31, Theorem 2.4]. The doubling condition
ψ(2B) ≤ 2sψ(B) for all balls B is trivially valid. The requirements [31, (23)(a)–(b)] are the
following growth conditions on balls:

ψ(B1) ≤ c1ψ(B2) if B1 ⊂ B2 ⊂ c2B1 and ψ(B1)µ(B1) ≤ c1ψ(B2)µ(B2) if B1 ⊂ B2.

An easy application of the doubling property of µ and inequality rad(B1) ≤ 2 rad(B2) yields
these two growth conditions. The requirement limrad(B)→∞ ψ(B) = 0 that appears in [31, (23)(c)]
follows from the assumption that µ(B) ≥ c rad(B)Q for all balls B ⊂ X with rad(B) ≥ 1.

The last fact that we need for (20) is that h = vt/(t−p) belongs to the “dyadic A∞-class”
Ady
∞(ψ−1). To this end, let us first observe that h dµ is a doubling measure, see inequality (8).

The doubling and reverse doubling (with η = s) properties (3) and (5) of µ imply that the
functional τ = ψ−1 on balls satisfies conditions [31, (16)(a)–(b)]. Fix a ball B and a measurable
set E ⊂ B. Using our assumptions and the inclusions (10), we find that h ∈

⋃
1≤P<∞AP ⊂ A∞,
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and thus

(21)
h(E)

h(B)
≤ C

(
µ(E)

µ(B)

)δ
≤ C

(
rad(B)sHµ,s

2 rad(B)(E)

µ(B)

)δ
= C

(Hµ,s
2 rad(B)(E)

ψ−1(B)

)δ
.

Finally, since inequality rad(Bj) ≤ 2 rad(B) holds if Bj ⊂ B is a ball, the above considerations
show that indeed h ∈ Ady

∞(ψ−1); we refer to [31, pp. 13–15] for details. Hence all the assumptions
of [31, Theorem 2.4] are satisfied by the above facts, and so the desired inequality (20) follows
from this theorem. �

Proof of Theorem 4.1. First we note that it follows from the assumptions that co dimA(E) > 0.
Indeed, if β ≥ 0, this readily follows from co dimA(E) > β/(p − 1). If β < sp − Q, then the
assumption would yield that co dimA(E) > Q > 0, and finally if sp−Q ≤ β < 0, then using the
assumption q ≤ Qp/(Q− sp) <∞ we obtain that

co dimA(E) > Q− q

p
(Q− sp+ β) ≥ Q− Q

Q− sp
(Q− sp+ β) > 0.

Since co dimA(E) > 0, it follows that µ(E) = 0.
For x ∈ X we write

w(x) = δE(x)(q/p)(Q−sp+β)−Q , v(x) = δE(x)β , h(x) = δE(x)−β/(p−1) .

Then w, v, and h are all weights that belong to the union
⋃

1≤P<∞AP of Muckenhoupt classes;
this follows from a straight-forward calculation using the assumptions and Theorem 3.4, and
considering the cases β ≥ 0 and β < 0 separately.

Hence it suffices to show that there is a constant K > 0 such that inequality

(22) w(B)1/qh(B)(p−1)/p ≤ K rad(B)−sµ(B)

holds for all balls B in X; then inequality (16) follows from Theorem 4.2 (case t = 1).
To this end, let us fix a ball B = B(x0, r) ⊂ X. Consider first the case dist(B,E) < rad(B) = r.

Then B ⊂ B(x, 3r) for some x ∈ E. Hence, by the fact that co dimA(E) > Q − q
p
(Q − sp + β),

Remark 3.2, and the doubling condition, we obtain

w(B)p/q ≤
(∫

B(x,3r)

δE(y)(q/p)(Q−sp+β)−Q dµ(y)

)p/q
≤ CrQ−sp+β−Qp/qµ(B)p/q .

Likewise, since co dimA(E) > β/(p− 1), we have

h(B)p−1 ≤
(∫

B(x,3r)

δE(y)−β/(p−1) dµ(y)

)p−1
≤ Cr−βµ(B)p−1 ,

and thus

w(B)p/qh(B)p−1 ≤ CrQ−sp+β−Qp/qµ(B)p/qr−βµ(B)p−1 = C

(
rQ

µ(B)

)1−p/q(
µ(B)

rs

)p
.

By the assumptions we have rQ

µ(B)
≤ c and p ≤ q, and so inequality (22) follows for all balls B

satisfying dist(B,E) < rad(B).
Let us then assume that dist(B,E) ≥ rad(B) = r. Then it holds for all y ∈ B that

δE(y)/3 ≤ dist(B,E) ≤ δE(y) ,

and thus we may estimate

w(B)p/qh(B)p−1 ≤ Cµ(B)p/q dist(B,E)Q−sp+β−Qp/qµ(B)p−1 dist(B,E)−β

≤ Cµ(B)p/q+p−1 dist(B,E)Q−sp−Qp/q .
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By assumption Q− sp−Qp/q ≤ 0, and so

w(B)p/qh(B)p−1 ≤ Cµ(B)p/q+p−1rQ−sp−Qp/q = C

(
rQ

µ(B)

)1−p/q(
µ(B)

rs

)p
.

The claim now follows as in the above case dist(B,E) < rad(B), and this concludes the proof. �

5. Fractional Hardy–Sobolev inequalities

Recall our standing assumptions (S1)–(S2) concerning the space X from the beginning of §4.

We now turn to the applications of the general embeddings established in the previous Section 4.
We begin with the fractional Hardy–Sobolev inequalities, since these require less assumptions on
the space than their classical (i.e. non-fractional) counterparts which, in turn, will be considered
in Section 6.

The main result of this section is Theorem 5.3 that gives a sufficient condition for the validity
of fractional Hardy–Sobolev inequalities in a metric space X. Even though connectivity of X
is not required due to the non-locality of these inequalities, we nevertheless need some further
structural assumptions. A suitable assumption is given by the following chain condition.

Definition 5.1. Let λ ≥ 1. We say that the space X satisfies the λ-chain condition, if there
is a constant M ≥ 1 such that for each x ∈ X and all 0 < r < R there is a sequence of balls
B0, B1, B2, . . . , Bk for some integer k with the following conditions (A)–(D):

(A) λB0 ⊂ X \B(x,R) and λBk ⊂ B(x, r),
(B) M−1 diam(λBi) ≤ dist(x, λBi) ≤M diam(λBi) for i = 0, 1, 2, . . . , k,
(C) there is a ball Ri ⊂ Bi ∩Bi+1 such that Bi ∪Bi+1 ⊂MRi for i = 0, 1, 2, . . . , k − 1,
(D) no point of X belongs to more than M balls λBi.

Remark 5.2. If X is connected, then it satisfies the λ-chain condition for all λ ≥ 1, see [28, p. 541]
and [13, p. 30]. Let us emphasize that X need not, however, be connected in order to satisfy
a chain condition. For instance the space Rn \ {|x| = 1}, n ∈ N, equipped with the Euclidean
metric and the Lebesgue measure, is disconnected but still satisfies the λ-chain condition for all
λ ≥ 1 (as well as our standing assumptions (S1) and (S2)).

Theorem 5.3. Let 0 < s < 1. Assume that X satisfies the 1-chain condition, that the reverse
doubling condition (5) holds with the exponent η = s, and that there is Q > s such that µ(B) ≥
c rad(B)Q for all balls B ⊂ X.

Let ∅ 6= E ⊂ X be a closed set, and let 1 < p ≤ q ≤ Qp/(Q− sp) <∞ and β ∈ R be such that

(23) co dimA(E) > max

{
Q− q

p
(Q− sp+ β) ,

β

p− 1

}
.

Then, if 1 ≤ t <∞, there is a constant C > 0 such that the fractional Hardy–Sobolev inequality(∫
X

|f(x)|qδE(x)(q/p)(Q−sp+β)−Q dµ(x)

)1/q

≤ C

(∫
X

(∫
X

|f(y)− f(z)|t

d(y, z)stµ(B(y, d(y, z)))
dµ(z)

)p/t
δβE(y) dµ(y)

)1/p
(24)

holds whenever f ∈ Lip0(X).

We note that the case t = q = p of inequality (24) is just the (weighted) fractional Hardy
inequality; see e.g. [20] and [8] for the Euclidean and metric versions of such inequalities, re-
spectively. The case β = 0 and t = p, i.e., non-weighted fractional Hardy–Sobolev inequality,
is considered in the Euclidean case in [19]. Theorem 5.3, in contrast, allows for the weighted
fractional Hardy–Sobolev inequalities, and it pertains to the context of metric measure spaces.
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Theorem 5.3 follows from Theorem 4.1 and Lemma 5.4 below. The proof of this lemma, in
turn, is a modification of [28, Theorem 3.2].

Recall that the Riesz potential Is is defined by (14).

Lemma 5.4. Let 0 < s < 1. Assume that X satisfies the 1-chain condition and that the reverse
doubling condition (5) holds with the exponent η = s.

Then, if 1 ≤ t <∞, we have for all f ∈ Lip0(X) and all x ∈ X that

(25) |f(x)| ≤ C Is(g)(x) ,

where C > 0 is independent of both f and x, and we have denoted

g(y) =

(∫
X

|f(y)− f(z)|t

d(y, z)stµ(B(y, d(y, z)))
dµ(z)

)1/t

for every y ∈ X.

Proof. Fix a function f ∈ Lip0(X) and x ∈ X; we may clearly assume that f(x) 6= 0. Since
f ∈ Lip0(X), we can choose R > 0 such that f = 0 on X \ B(x,R). Fix also 0 < r < R such
that |f(x)− f(y)| ≤ |f(x)|/2 for each y ∈ B(x, r). The 1-chain condition, applied with the point
x and 0 < r < R, now gives a sequence of balls B0, B1, B2, . . . , Bk satisfying conditions (A)–(D)
in Definition 5.1.

By condition (A) and the fact that f vanishes in B0 ⊂ X \B(x,R), we obtain

|f(x)| = |f(x)− fB0| ≤
k−1∑
i=0

|fBi+1
− fBi

|+ |f(x)− fBk
| .

The above choice of r > 0 and condition (A) together imply that |f(x)− fBk
| ≤ |f(x)|/2. Thus,

by condition (C),

|f(x)| ≤ 2
k−1∑
i=0

|fBi+1
− fBi

| ≤ 2
k−1∑
i=0

(
|fBi+1

− fRi
|+ |fBi

− fRi
|
)

≤ C
k∑
i=0

∫
Bi

|f(y)− fBi
| dµ(y) .

Let us next consider a fixed i = 0, . . . , k. First, we have∫
Bi

|f(y)− fBi
| dµ(y)

=

∫
Bi

∣∣∣∣ 1

µ(Bi)

∫
Bi

(f(y)− f(z)) dµ(z)

∣∣∣∣ dµ(y)

≤ 1

µ(Bi)

∫
Bi

(
1

µ(Bi)

∫
Bi

|f(y)− f(z)|t dµ(z)

)1/t

dµ(y)

≤ C(2 rad(Bi))
s

µ(Bi)

∫
Bi

(∫
Bi

|f(y)− f(z)|t

(2 rad(Bi))stµ(4Bi)
dµ(z)

)1/t

dµ(y)

≤ C rad(Bi)
s

µ(Bi)

∫
Bi

(∫
Bi

|f(y)− f(z)|t

d(y, z)stµ(B(y, d(y, z)))
dµ(z)

)1/t

dµ(y) .

Let us also fix y ∈ Bi. By condition (B),

B(x, d(x, y)) ⊂ κBi .

where κ = C(M) ≥ 1. Hence, by the doubling (4) and reverse doubling (5) conditions,

µ(B(x, d(x, y)))

µ(Bi)
≤ C(κ,CD)

µ(B(x, d(x, y)))

µ(κBi)
≤ C(κ,CD, C

∗)

(
d(x, y)

rad(Bi)

)s
.
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Combining the above estimates, we obtain

k∑
i=0

∫
Bi

|f(y)− fBi
| dµ(y) ≤ C

k∑
i=0

∫
Bi

g(y)d(x, y)s

µ(B(x, d(x, y)))
dµ(y) .

Finally, by condition (D),

|f(x)| ≤ C

∫
X

g(y)d(x, y)s

µ(B(x, d(x, y)))
dµ(y) = C Is(g)(x) .(26)

Inequality (25) follows, and this concludes the proof. �

The next proposition shows that under some (relatively mild) additional assumptions, namely
Ahlfors regularity, co dimA(E) > 0, β ≥ 0 and t ≤ q, the first term on the right-hand side of (23)
in Theorem 5.3 is optimal.

Proposition 5.5. Let 0 < s < 1 and assume that X is Ahlfors Q-regular with Q > s, i.e., there
exists CA ≥ 1 such that C−1A rQ ≤ µ(B(x, r)) ≤ CAr

Q for each x ∈ X and every 0 < r <∞.
Let ∅ 6= E ⊂ X be a closed set such that co dimA(E) > 0, and let 1 < p ≤ q ≤ Qp/(Q−sp) <∞

and β ≥ 0. Assume that for some 1 ≤ t ≤ q and CH > 0 the fractional Hardy–Sobolev inequality(∫
X

|f(x)|qδE(x)(q/p)(Q−sp+β)−Q dµ(x)

)1/q

≤ CH

(∫
X

(∫
X

|f(y)− f(z)|t

d(y, z)stµ(B(y, d(y, z)))
dµ(z)

)p/t
δβE(y) dµ(y)

)1/p

holds for all functions f ∈ Lip0(X). Then

co dimA(E) > Q− q

p
(Q− sp+ β).

Proof. We denote α = Q − q
p
(Q − sp + β) and fix arbitrary x ∈ E and R > 0. We may assume

α > 0, as otherwise there is nothing to prove. In what follows, the varying constant C > 0 may
depend on s, t, p, q, β, Q and the constants CA and CH , but not on x or R.

Let f(y) = max{2R− d(x, y), 0} for each y ∈ X. Then f ∈ Lip0(X) and inequality

|f(y)− f(z)| ≤ min{d(y, z), 2R}

holds whenever y, z ∈ X. Thus, for any y ∈ X,∫
X

|f(y)− f(z)|t

d(y, z)stµ(B(y, d(y, z)))
dµ(z) ≤

∑
n∈Z

∫
2nR≤d(y,z)<2n+1R

(
min{2n+1R, 2R}

)t
(2nR)stµ(B(y, 2nR))

dµ(z)

≤ C

(∑
n<0

Rt−st2n(t−st) +
∑
n≥0

Rt−st2−nst

)
≤ CRt−st.

If however y is far away from x, then this estimate can be improved. Indeed, suppose that
2nR ≤ d(x, y) < 2n+1R for some n ≥ 2. Then f(y) = 0, and if f(z) 6= 0 then z ∈ B(x, 2R), and
so d(y, z) ≥ d(y, x)− d(x, z) ≥ 2nR− 2R ≥ 2n−1R. Consequently,∫

X

|f(y)− f(z)|t

d(y, z)stµ(B(y, d(y, z)))
dµ(z) ≤

∫
B(x,2R)

(2R)t

2(n−1)stRstµ(B(y, 2n−1R))
dµ(z)

≤ CRt−st2−nst
µ(B(x, 2R))

µ(B(y, 2n−1R))

≤ CRt−st2−n(st+Q).
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We claim that the Aikawa condition (11) holds with the exponent α > 0. Indeed, since β ≥ 0,
we obtain form the assumed fractional Hardy–Sobolev inequality that∫

B(x,R)

δ−αE (y) dµ(y) ≤ R−q
∫
X

|f(y)|qδ−αE (y) dµ(y)

≤ CR−q

[∫
X

(∫
X

|f(y)− f(z)|t

d(y, z)stµ(B(y, d(y, z)))
dµ(z)

)p/t
δβE(y) dµ(y)

]q/p

= CR−q

[(∫
B(x,4R)

+
∞∑
n=2

∫
2nR≤d(x,y)<2n+1R

)(
. . .

)p/t
δβE(y) dµ(y)

]q/p

≤ CR−q

[
∞∑
n=1

µ(B(x, 2n+1R))

(
Rt−st2−n(st+Q)

)p/t
(2n+1R)β

]q/p

≤ CR−q+(q/p)(Q+p−sp+β)

[
∞∑
n=1

2−n(sp+Qp/t−Q−β)

]q/p
≤ CRQ−α ≤ CR−αµ(B(x,R)),

as claimed. To estimate the last series above, we used the inequality

sp+Qp/t−Q− β ≥ sp+Qp/q −Q− β = αp/q > 0 .

By Lemma 3.3, there then exists some δ > 0 such that the Aikawa condition (11) holds also
with the exponent α + δ. Thus, by Remark 3.2, co dimA(E) ≥ α + δ > α. �

Remark 5.6. Notice that Proposition 5.5 also shows the sharpness of the assumption

co dimA(E) > Q− q

p
(Q− sp+ β)

in Theorem 4.1.
However, we do not know if the assumption co dimA(E) > β

p−1 is optimal or even needed at all

in Theorem 5.3. For instance, such an extra condition is not needed in the corresponding “thin
case” of the fractional Hardy inequalities (i.e. case p = q) considered in [8], although there the
functions are in addition assumed to vanish on E. Direct computations also indicate that no
such condition is needed for fractional Hardy–Sobolev inequalities e.g. in the simple special case
when X = Rn−1 × [0,∞) and E = Rn−1 × {0} ⊂ Rn. On the other hand, we have no examples
that would show the necessity of this assumption in the context of fractional Hardy–Sobolev
inequalities.

Nevertheless, in the following section we show that the corresponding assumption is indeed
needed in the context of first order (i.e. non-fractional) Hardy–Sobolev inequalities, whence it is
needed — and in this generality also optimal — in Theorem 4.1 as well; see Remark 6.3. Thus
it seems that the bound co dimA(E) > β

p−1 is in a way a built-in feature of the present approach

using general Ap-weighted embeddings, and if one wants to get rid of this bound e.g. in the context
of fractional Hardy–Sobolev inequalities, then a different approach needs to be used.

6. First order Hardy–Sobolev inequalities

Recall that X is an unbounded metric space equipped with a doubling measure µ. The other
standing assumptions from the beginning of §4 are satisfied in this section due to the fact that the
spaces considered here are necessarily connected; cf. Section 2.

Let us first review some basic facts concerning upper gradients and Poincaré inequalities in
metric spaces. Let f : X → R be a measurable function. A Borel measurable function g ≥ 0 on
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X is an upper gradient of f , if for all compact rectifiable curves γ in X we have

|f(y)− f(x)| ≤
∫
γ

g ds .

Here x and y are the two endpoints of γ, and the above condition should be interpreted as claiming
that

∫
γ
g ds =∞ whenever at least one of |f(x)|, |f(y)| is infinite. See e.g. [3, 16] for introduction

on analysis on metric spaces based on the notion of upper gradients. For instance, if X = Rn

(with the Euclidean distance and the Lebesgue measure), then g = |∇f | is an upper gradient of
a function f ∈ Lip(Rn).

We say that the space X supports a (1, 1)-Poincaré inequality (or simply Poincaré inequality)
if there exist constants CP > 0 and τ ≥ 1 such that whenever B is a ball in X and g is an upper
gradient of a measurable function f : X → R, we have

(27)

∫
B

|f − fB| dµ ≤ CP rad(B)

∫
τB

g dµ .

Here the right-hand side of (27) is interpreted as ∞, if the integral average fB is not defined.
If the space X supports a Poincaré inequality, then X is connected; see [3, Corollary 4.4]. In
particular, by Remark 5.2 such a space satisfies the λ-chain condition given in Definition 5.1 for
all λ ≥ 1.

We are ready to state and prove (global) weighted Hardy–Sobolev inequalities of the first order.
To the best of our knowledge, the case q > p has not been considered previously in the setting
of general metric spaces. Corresponding results in Rn have been obtained in [25]. See also the
references in [25] for some earlier results in Rn and [23] for results in the case p = q in metric
spaces. Nevertheless, Theorem 6.1 gives a partial improvement also to the Euclidean results
of [25]; see Remark 6.2.

Theorem 6.1. Assume that X supports a (1, 1)-Poincaré inequality, that the reverse doubling
condition (5) holds with the exponent η = 1, and that there is Q > 1 such that µ(B) ≥ c rad(B)Q

for all balls B ⊂ X.
Let ∅ 6= E ⊂ X be a closed set, and let 1 < p ≤ q ≤ Qp/(Q− p) <∞ and β ∈ R be such that

co dimA(E) > max

{
Q− q

p
(Q− p+ β) ,

β

p− 1

}
.

Then, there is a constant C > 0 such that the weighted Hardy–Sobolev inequality

(28)

(∫
X

|f(x)|q δE(x)(q/p)(Q−p+β)−Q dµ(x)

)1/q

≤ C

(∫
X

g(x)p δE(x)β dµ(x)

)1/p

holds whenever f ∈ Lip0(X) and g is an upper gradient of f .

Proof. We shall adapt the line of argument from the proof of Theorem 5.3 from Section 5. Fix
f ∈ Lip0(X) and its upper gradient g. By Theorem 4.1, it suffices to prove that there is a constant
C > 0, independent of f and g, for which

(29) |f(x)| ≤ CI1(g)(x)

whenever x ∈ X; recall that I1(g) is defined by (14). We remark that inequality (29) is essentially
available in the literature, see [28, Remark 3.3], but we provide below some details for the sake
of completeness.

To prove inequality (29), it suffices to consider a fixed x ∈ X for which f(x) 6= 0. Proceeding
as in the proof of Lemma 5.4, but applying the τ -chain condition with τ ≥ 1 as in the assumed
Poincaré inequality (27), we obtain M ≥ 1 and balls B0, B1, B2, . . . , Bk from Definition 5.1 such
that

|f(x)| ≤ C

k∑
i=0

∫
Bi

|f(y)− fBi
| dµ(y) .
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The Poincaré inequality (27) then yields for each i ∈ {0, 1, 2, . . . , k} that∫
Bi

|f(y)− fBi
| dµ(y) ≤ C rad(Bi)

µ(Bi)

∫
τBi

g(y) dµ(y) .

The reverse doubling condition (5) with η = 1 can be invoked in a similar way as in Lemma 5.4,
with κ = C(τ,M) ≥ 1 and with y ∈ τBi instead of Bi. Thereby we obtain

k∑
i=0

∫
Bi

|f(y)− fBi
| dµ(y) ≤ C

k∑
i=0

∫
τBi

g(y)d(x, y)

µ(B(x, d(x, y)))
dµ(y) .

Finally, by condition (D) in Definition 5.1,

|f(x)| ≤ C

∫
X

g(y)d(x, y)

µ(B(x, d(x, y)))
dµ(y) ,(30)

from which inequality (29) follows. �

Recall that in the case q = Qp/(Q − p), β = 0, Theorem 6.1 yields the (global) Sobolev
inequality, which is known to hold in a metric space X also under weaker assumptions than those
in Theorem 6.1; see, for instance [3, Theorem 5.50]. Nevertheless, it seems that at least some
version of the measure lower bound µ(B) ≥ c rad(B)Q is needed for the Sobolev inequality to
hold. In [3, Theorem 5.50], this bound is assumed for a sequence of balls Bj with rad(Bj)→∞ as
j →∞. Hence such an assumption is natural in our results as well, in particular in Theorem 4.1
from which all our other inequalities follow.

Remark 6.2. Theorem 6.1 gives even in the Euclidean space Rn a slight improvement to the
known results concerning Hardy–Sobolev inequalities. Namely, in [25, Theorem 5.1] it was proved
that if E is a closed set in Rn with n − 1 ≤ dimA(E) < n, and if 1 ≤ p ≤ q ≤ np/(n − p) < ∞
and

(31) β ≤ (p− 1)(qp+ np− nq)
qp+ p− q

are such that

dimA(E) <
q

p
(n− p+ β) ,

then there is a constant C > 0 such that inequality

(32)

(∫
Rn

|f(x)|q δE(x)(q/p)(n−p+β)−n dx

)1/q

≤ C

(∫
Rn

|∇f(x)|p δE(x)β dx

)1/p

holds for all f ∈ C∞0 (Rn). Using Theorem 6.1, we can now improve the upper bound (31) for β.
More precisely, the dimensional assumptions of Theorem 6.1 are in Rn equivalent to the bounds

dimA(E) < q
p
(n− p+ β) and dimA(E) < n− β/(p− 1). The latter is equivalent to

(33) β < (n− dimA(E))(p− 1) ,

which is a better upper bound than (31) if

(34) n− dimA(E) >
qp+ np− nq
qp+ p− q

.

But now, if dimA(E) < q
p
(n− p+ β) and (31) holds, then

dimA(E) <
q

p
(n− p+ β) ≤ q

p

(
n− p+

(p− 1)(qp+ np− nq)
qp+ p− q

)
and so

n− dimA(E) > n− nqp− qp
qp+ p− q

=
qp+ np− nq
qp+ p− q

.
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Hence (34) holds whenever the assumptions of the case dimA(E) ≥ n−1 of [25, Theorem 5.1] are
satisfied, and we can conclude that our Theorem 6.1 gives in all such cases a better upper bound
for the set of admissible β in these Euclidean Hardy–Sobolev inequalities (32).

On the other hand, in the case dimA(E) < n − 1 and β > 0, [25, Theorem 5.1] is better
than the present Theorem 6.1, because in this case there is no additional upper bound (33) for
β in [25]. We do not know if also in the metric setting it could be possible to get rid of, or at
least weaken, the assumption co dimA(E) > β/(p − 1) when co dimA(E) > 1. However, as was
already mentioned in Remark 5.6, this bound seems to be intrinsic to the present approach using
Ap-weights, and hence other tools need to be used if one wants to weaken or remove this bound;

see also the following Remark 6.3. In the case dimA(E) < n − 1 of the Euclidean result [25,
Theorem 5.1], such a tool is given by Euclidean isoperimetric inequalities.

Remark 6.3. Finally, let us discuss the optimality of the bound

co dimA(E) > max

{
Q− q

p
(Q− p+ β) ,

β

p− 1

}
in Theorem 6.1. In Rn, the first bound is equivalent to dimA(E) < q

p
(n − p + β). This is

certainly optimal, since for β ≥ 0 this is even necessary for the Hardy–Sobolev inequality (32)
(when q

p
(n − p + β) 6= n); we refer to [25, Theorem 6.1]. The second bound reads in Rn as

dimA(E) < n − β
p−1 , or equivalently β < (n − dimA(E))(p − 1). Now, given any n − 1 ≤ λ < n,

it is possible to construct an Ahlfors λ-regular set E ⊂ Rn (so that dimA(E) = λ) such that the
Hardy–Sobolev inequality (32) fails whenever

β > p− 1
(
≥ (n− dimA(E))(p− 1)

)
,

and the (p, β)-Hardy inequality, i.e. case q = p in (32), fails also for β = p− 1. In particular, for
dimA(E) = n − 1 the bound β < (n − dimA(E))(p − 1) is sharp, showing also the sharpness of
the assumption co dimA(E) > β

p−1 in Theorem 4.1 (as was already pointed out in Remark 5.6).

Let us give more details in the planar case; similar constuctions can be made also in higher
dimensions for n− 1 ≤ λ < n, but we omit the details.

Let E1 = ∂([0, 1]2) ⊂ R2 be the boundary of the unit square. Consider functions fj ∈
C∞0 ([0, 1]2) such that fj(x) = 1 when δE1(x) ≥ 21−j, fj(x) = 0 when δE1(x) ≤ 2−j, and
|∇fj| ≤ C2j when 2−j < δE1(x) < 21−j. Then, for any 1 ≤ p ≤ q ≤ 2p/(2 − p) < ∞ and
β ∈ R, the left-hand side of the Hardy–Sobolev inequality (32) is uniformly bounded away from
zero for these functions fj if j > 1. On the other hand, it is easy to show that when β > p − 1,
the right hand side of (32) tends to zero as j → ∞, and so the Hardy–Sobolev inequality fails
for all β > p − 1 = (2 − dimA(E1))(p − 1) (here n = 2 and dimA(E1) = 1). Moreover, for
q = p and β = p − 1, the right-hand side of (32) remains bounded while the left-hand side
tends to infinity. This rather simple construction already yields the sharpness of the assumption
β < (n− dimA(E))(p− 1), i.e. co dimA(E) > β

p−1 .

To obtain a λ-regular set Eλ ⊂ R2 such that the Hardy–Sobolev inequality fails for all β > p−1
with respect to this set, we can replace the sides of the unit square with outward pointing copies
of the λ-dimensional “antenna set” K ⊂ R2. In the complex plane, the set K can be described as
the unique invariant set under the iterated function system of similitudes Fα = {ϕ1, ϕ2, ϕ3, ϕ4},
where 0 < α < 1

2
and

ϕ1(z) =1
2
z , ϕ3(z) = αiz + 1

2
,

ϕ2(z) =1
2
z + 1

2
, ϕ4(z) = −αiz + 1

2
+ αi .

Since K =
⋃4
j=1 ϕj(K) and Fα satisfies the open set condition, K is λ-regular, where 1 < λ < 2

is the solution of the equation 2 · 2−λ + 2αλ = 1; see [5] for more details on the antenna set.
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Now, from the perspective of the above test functions fj having support inside the unit square
[0, 1]2, the set Eλ looks just like the set E1, and hence the Hardy–Sobolev inequality (32) fails
also in this case whenever β > p − 1, and the case q = p fails also when β = p − 1. For
1 < λ < 2 we however do not obtain sharpness of the bound β < (n − dimA(E))(p − 1) since
here n − dimA(E) = 2 − λ < 1. We do not know if there exist sharp examples also for the case
dimA(E) > n−1 (or co dimA(E) < 1 in metric space) or if the bound β < p−1 is always optimal
in this case as well.
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[25] Lehrbäck, J., Vähäkangas, A.V.: In Between the inequalities of Sobolev and Hardy. J. Funct. Anal. 271,

330–364 (2016)
[26] Luukkainen, J.: Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J.

Korean Math. Soc. 35, 23–76 (1998)
[27] Mackay, J.M., Tyson, J.T.: Conformal dimension: Theory and application. University Lecture Series 54.

American Mathematical Society, Providence, RI (2010)



20 B. DYDA, L. IHNATSYEVA, J. LEHRBÄCK, H. TUOMINEN, AND A. V. VÄHÄKANGAS
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