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Abstract. We prove fractional Sobolev–Poincaré inequalities, capacitary versions of fractional
Poincaré inequalities, and pointwise and localized fractional Hardy inequalities in a metric space
equipped with a doubling measure. Our results generalize and extend earlier work where such
inequalities have been considered in the Euclidean spaces or in the non-fractional setting in metric
spaces. The results concerning pointwise and localized variants of fractional Hardy inequalities
are new even in the Euclidean case.

1. Introduction

Let X = (X, d, µ) be a metric measure space and let 1 ≤ p, q, t < ∞ and 0 < s < 1. The
fractional (s, q, p, t)-Poincaré (or Sobolev–Poincaré) inequality on X reads as(∫

B

|u(x)− uB|q dx
)1/q

≤ cP r
s

(∫
λB

(∫
λB

|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx

)1/p

, (1.1)

where dx = dµ(x) and dy = dµ(y). We say that X supports a (s, q, p, t)-Poincaré inequality
if there are constants cP > 0 and λ ≥ 1 such that inequality (1.1) holds for every ball B =
B(x0, r) ⊂ X and for all functions u : X → R that are integrable on balls.

If q ≤ min{p, t} and the measure µ is doubling, then it is straightforward to show that the space
X supports a (s, q, p, t)-Poincaré inequality; see Lemma 2.2. This is quite different compared to
the usual (i.e. non-fractional) Poincaré inequalities, whose validity in a metric measure space is
usually an indication of the existence of a rich geometric structure in the space; we refer to the
monographs [1, 15] for more explanation and examples.

The main goal in this work is to prove stronger variants of fractional inequalities, such as
(Sobolev–)Poincaré inequalities for q > p, capacitary versions of Poincaré inequalities, and point-
wise and localized Hardy inequalities. The validity of these stronger variants often requires
additional assumptions on the space and the functions and sets in the inequalities. For example,
in the so-called boundary Poincaré inequalities the mean value uB on the left-hand side of (1.1)
can be omitted if the set where u = 0 (i.e. the “boundary”) is large enough.

The parameter 1 ≤ t < ∞ in inequality (1.1) allows certain flexibility in the applications, for
instance in the proof of the localized fractional Hardy inequality∫

B\E

|u(x)|p

d(x,E)sp
dx ≤ C

∫
λB

∫
λB

|u(x)− u(y)|p

d(x, y)spµ(B(x, d(x, y)))
dy dx, (1.2)

where 0 < s < 1, 1 < p < ∞, λ ≥ 1, E ⊂ X is a closed set, B = B(w, r) for some w ∈ E
and 0 < r < diam(E), and u : X → R is a continuous function with u = 0 on E. As one
of our main results we show that the validity of inequality (1.2) is essentially characterized by
dimensional information related to the set E. More precisely, co dimA(E) < sp is sufficient and
co dimA(E) ≤ sp is necessary for (1.2), where co dimA(E) is the upper Assouad codimension of E,
see Definition 4.4. The upper bound for this codimension means that the set E must be sufficiently
large in comparison to the size of the ambient space X. In the Euclidean case X = Rn we have
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co dimA(E) = n− dimA(E), where dimA is the lower dimension (or lower Assouad dimension) of
E ⊂ Rn.

We obtain the localized inequality (1.2) as a consequence of a pointwise fractional Hardy
inequality, given in terms of a maximal operator. In the non-fractional case in Rn, pointwise Hardy
inequalities were introduced in [11] and [20]. Sufficient and necessary conditions for pointwise
Hardy inequalities in metric spaces have been given in [21]; see also [22] for weighted variants.
Fractional Hardy inequalities on open sets have been studied in the Euclidean space Rn for
instance in [4, 7, 9, 10, 18, 24] and in general metric spaces in [5, 8], but the present pointwise and
localized versions of fractional Hardy inequalities, as well as the boundary Poincaré inequalities,
are new even in the Euclidean case. Sobolev–Poincaré inequalities have also been considered in
more general sets than balls, in particular in the so-called John domains, see [2, 16, 17] and the
references therein.

The outline for the rest of the paper is as follows. In Section 2 we review the necessary
definitions and notation on metric measure spaces and give in Lemma 2.2 the basic versions of
fractional Poincaré inequalities for q ≤ p; these are used as a starting point in the proofs of the
stronger inequalities in the subsequent sections. Section 3 is devoted to extending the range in
the fractional (Sobolev–)Poincaré inequalities to q > p, following the ideas in the proofs of the
corresponding fractional results in the Euclidean case [6] as well in the non-fractional results in
metric spaces [1]. In Section 4 we introduce a variant of the relative fractional capacity and prove
a Maz′ya type capacitary Poincaré inequality in Theorem 4.3. Boundary Poincaré inequalities
are obtained in Theorem 4.7 and Corollary 4.8 under the dimensional condition co dimA(E) < sp,
which is connected to the relative capacity via suitable Hausdorff contents; see Definition 4.5 and
Lemma 4.6. In Section 5, the localized Hardy inequality (1.2) is obtained in Theorem 5.2 as a
consequence of a pointwise fractional Hardy inequality, see Theorem 5.1, which in turn is based
on the boundary Poincaré inequality in Theorem 4.7. Theorem 5.3 then shows the necessity of
the condition co dimA(E) ≤ sp for the localized inequality (1.2). In Sections 4 and 5 our proofs
often follow the main lines of the proofs from the non-fractional case, as for instance in [1, 15, 21],
but due to the non-locality of the setting several modifications are needed in the proofs.

2. Preliminaries

We assume throughout this paper that X = (X, d, µ) is a metric measure space (with at least
two points), where µ is a Borel measure supported on X such that µ({x}) = 0 for all x ∈ X and
0 < µ(B) <∞ for all (open) balls

B = B(x, r) := {y ∈ X : d(x, y) < r}

with x ∈ X and r > 0. We make the tacit assumption that each ball B ⊂ X has a fixed center
xB and radius rad(B), and thus notation such as λB = B(xB, λ rad(B)) is well-defined for all
λ > 0. When E,F ⊂ X, we let diam(E) denote the diameter of E and dist(E,F ) is the distance
between the sets E,F ⊂ X. We use d(x,E) = dist(x,E) = dist({x}, E) to denote the distance
from a point x ∈ X to the set E. If E ⊂ X, then χE denotes the characteristic function of E;
that is, χE (x) = 1 if x ∈ E and χE (x) = 0 if x ∈ X \ E.

We also assume throughout that µ is doubling, that is, there is a constant cD ≥ 1 such that
whenever x ∈ X and r > 0, we have

µ(B(x, 2r)) ≤ cD µ(B(x, r)). (2.3)

Iteration of (2.3) shows that if µ is doubling, then there exist an exponent Q > 0 and a constant
cQ > 0, both only depending on cD, such that the quantitative doubling condition

µ(B(y, r))

µ(B(x,R))
≥ cQ

( r
R

)Q
(2.4)
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holds whenever y ∈ B(x,R) ⊂ X and 0 < r < R. Condition (2.4) always holds for Q ≥ log2 cD,
but it can hold for smaller values of Q as well. See [1, Lemma 3.3] for details.

In some of our results we also need to assume that µ is reverse doubling, in the sense that there
are constants 0 < κ < 1 and 0 < cR < 1 such that

µ(B(x, κr)) ≤ cR µ(B(x, r)) (2.5)

for every x ∈ X and 0 < r < diam(X)/2. If X is connected and 0 < κ < 1, then inequality (2.5)
follows from the doubling property (2.3) with 0 < cR = cR(cD, κ) < 1. See for instance [1,
Lemma 3.7]. Iteration of (2.5) shows that if µ is reverse doubling, then there exist an exponent
σ > 0 and a constant cσ > 0, both only depending on κ and cR, such that the quantitative reverse
doubling condition

µ(B(x, r))

µ(B(x,R))
≤ cσ

( r
R

)σ
(2.6)

holds for every x ∈ X and 0 < r < R < 2 diam(X).
If the measure µ is Ahlfors Q-regular for some Q > 0, that is, there is a constant C > 0 such

that
1

C
rQ ≤ µ(B(x, r)) ≤ CrQ

for every x ∈ X and 0 < r < diam(X), then µ is both doubling and reverse doubling, and the
quantitative estimates (2.4) and (2.6) hold with the exponent Q.

We abbreviate dµ(x) = dx and say that a function u : X → R is integrable on balls, if u is
µ-measurable and

‖u‖L1(B) =

∫
B

|u(x)| dx <∞

for all balls B ⊂ X. In particular, for such functions the integral average

uB =

∫
B

u(x) dx =
1

µ(B)

∫
B

u(x) dx

is well-defined whenever B is a ball in X. Observe that we do not always assume that the space
X is complete, and hence continuous functions are not necessarily integrable on balls.

Definition 2.1. Let 1 ≤ p, q, t <∞ and 0 < s < 1. We say that X supports a (s, q, p, t)-Poincaré
inequality, if there are constants cP > 0 and λ ≥ 1 such that inequality(∫

B

|u(x)− uB|q dx
)1/q

≤ cP r
s

(∫
λB

(∫
λB

|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx

)1/p

(2.7)

holds for every ball B = B(x0, r) ⊂ X and for all functions u : X → R that are integrable on
balls.

In particular the left-hand side of (2.7) is finite, if the right-hand side is finite.
If u : X → R is a measurable function, 0 < s < 1, 1 ≤ t <∞, and A ⊂ X is a measurable set,

we write

gu,s,t,A(x) =

(∫
A

|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy

)1/t

, for every x ∈ X.

Using this notation, the (s, q, p, t)-Poincaré inequality (2.7) can be written as(∫
B

|u(x)− uB|q dx
)1/q

≤ cP r
s

(∫
λB

gu,s,t,λB(x)p dx

)1/p

.

We will repeatedly use the facts that g|u|,s,t,A ≤ gu,s,t,A and gu,s,t,A ≤ gu,s,t,A′ when A ⊂ A′.
The following lemma shows that X supports a (s, q, p, t)-Poincaré inequality if 1 ≤ q ≤

min{p, t}. We emphasize that the doubling condition on µ is the only quantitative property
of X that is needed in this case. This result is certainly known among experts, but we include
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the short proof for the convenience of the reader. We refer to [16, Lemma 2.2] for a variant of
this result in Rn.

Lemma 2.2. Assume that 1 ≤ q, p, t < ∞, q ≤ min{p, t}, and 0 < s < 1. Then X supports the
(s, q, p, t)-Poincaré inequality (2.7) with constants λ = 1 and cP = cP (s, q, t, cD).

Proof. Fix a ball B = B(x0, r) ⊂ X and a function u : X → R that is integrable on balls. Then∫
B

|u(x)− uB|q dx ≤
∫
B

∫
B

|u(x)− u(y)|q dy dx

≤
∫
B

(∫
B

|u(x)− u(y)|t dy
)q/t

dx

≤
(∫

B

(∫
B

|u(x)− u(y)|t dy
)p/t

dx

)q/p
≤ rsq

(∫
B

(∫
B

|u(x)− u(y)|t

rstµ(B)
dy

)p/t
dx

)q/p
≤ Crsq

(∫
B

(∫
B

|u(x)− u(y)|t

d(x, y)stµ(4B)
dy

)p/t
dx

)q/p
≤ Crsq

(∫
B

(∫
B

|u(x)− u(y)|t

d(x, y)st µ(B(x, d(x, y)))
dy

)p/t
dx

)q/p
.

This yields the desired inequality (2.7) with λ = 1 and cP = cP (s, q, t, cD). �

3. Sobolev–Poincaré inequalities

As with the usual Poincaré inequalities (see [1, 15]), also in the fractional case it is possible to
improve inequalities from the case q ≤ p (in Lemma 2.2) to the case q > p, up to the “Sobolev
exponent” p∗ = Qp/(Q−sp); see Theorem 3.4 below. For this purpose, we apply a metric measure
space version of the fractional truncation method in [9, Proposition 5], [6, Theorem 4.1]; see also
[3, Proposition 2.14]. In the proof we need the following auxiliary result, which is a special case
of [12, Lemma 5].

Lemma 3.1. Assume that g ≥ 0 is a measurable function on a ball B ⊂ X with

µ({x ∈ B : g(x) = 0}) ≥ µ(B)/2.

Then inequality

µ({x ∈ B : g(x) > t}) ≤ 2 inf
a∈R

µ({x ∈ B : |g(x)− a| > t/2})

holds for every t > 0.

Theorem 3.2 below is metric measure space version of the Euclidean result in [6, Theorem 4.1].
We will later apply this theorem with the kernel

K(y, z) =
1

d(y, z)spµ(B(y, d(y, z)))
, y, z ∈ X,

but we formulate the result in terms of general kernels. The proof is a straightforward adaptation
of the proof in [6], and it is based on a fractional Maz′ya truncation method.

Theorem 3.2. Let 0 < s < 1, 0 < p ≤ q < ∞, and λ ≥ 1. Let K : X × X → [0,∞] be
a measurable function and let B = B(x0, r) ⊂ X be a ball. Then the following conditions are
equivalent:
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(A) There is a constant C1 > 0 such that inequality

inf
a∈R

sup
t>0

µ({x ∈ B : |u(x)− a| > t})tq ≤ C1

(∫
λB

∫
λB

|u(y)− u(z)|pK(y, z) dz dy

) q
p

holds for every u ∈ L∞(λB).
(B) There is a constant C2 > 0 such that inequality

inf
a∈R

∫
B

|u(x)− a|q dx ≤ C2

(∫
λB

∫
λB

|u(y)− u(z)|pK(y, z) dz dy

) q
p

holds for every u ∈ L1(λB), and the left-hand side is finite if the right-hand side is finite.

Moreover, in the implication from (A) to (B) the constant C2 is of the form C(p, q)C1, and in the
implication from (B) to (A) we have C1 = C2.

Proof. The implication from (B) to (A) with C1 = C2 follows from Chebyshev’s inequality. Let
us then assume that condition (A) holds. Fix u ∈ L1(λB) and let b ∈ R be such that

µ({x ∈ B : u(x) ≥ b}) ≥ µ(B)

2
and µ({x ∈ B : u(x) ≤ b}) ≥ µ(B)

2
. (3.8)

We write v+ = max{u− b, 0} and v− = −min{u− b, 0}. In the sequel v denotes either v+ or v−;
all the statements are valid in both cases. Moreover, without loss of generality, we may assume
that v ≥ 0 is defined and finite everywhere in λB.

For 0 < t1 < t2 <∞ and every x ∈ λB, we define

vt2t1 (x) =


t2 − t1, if t2 ≤ v(x),

v(x)− t1, if t1 < v(x) < t2,

0, if v(x) ≤ t1.

Observe from (3.8) that

µ({x ∈ B : vt2t1 (x) = 0}) ≥ µ(B)/2.

By Lemma 3.1 and condition (A), both applied to the non-negative function vt2t1 ∈ L∞(λB),

sup
t>0

µ({x ∈ B : vt2t1 (x) > t}) tq ≤ 21+q inf
a∈R

sup
t>0

µ({x ∈ B : |vt2t1 (x)− a| > t}) tq

≤ 21+qC1

(∫
λB

∫
λB

|vt2t1 (y)− vt2t1 (z)|pK(y, z) dz dy

) q
p

.
(3.9)

We write Ek = {x ∈ λB : v(x) > 2k} and Ak = Ek−1 \ Ek, where k ∈ Z. Since v ≥ 0 is finite
everywhere in B, we can write

B = {x ∈ B : 0 ≤ v(x) <∞} =

(⋃
i∈Z

B ∩ Ai

)
∪
(
B ∩ {x ∈ λB : v(x) = 0}︸ ︷︷ ︸

=:A−∞

)
)
. (3.10)

Hence, by inequality (3.9) and the fact that
∑

k∈Z |ak|q/p ≤
(∑

k∈Z |ak|
)q/p

for all real-valued
sequences (ak)k∈Z, we obtain∫

B

|v(x)|q dx ≤
∑
k∈Z

2(k+1)qµ(B ∩ Ak+1) ≤
∑
k∈Z

2(k+1)qµ({x ∈ B : v2k

2k−1(x) > 2k−2})

≤ 21+4qC1

(∑
k∈Z

∫
λB

∫
λB

|v2k

2k−1(y)− v2k

2k−1(z)|pK(y, z) dz dy

) q
p

.
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Using the definition of v2k

2k−1 , we can now estimate∑
k∈Z

∫
λB

∫
λB

|v2k

2k−1(y)− v2k

2k−1(z)|pK(y, z) dz dy

≤

{∑
k∈Z

∑
−∞≤i≤k

∑
j≥k

∫
Ai

∫
Aj

+
∑
k∈Z

∑
i≥k

∑
−∞≤j≤k

∫
Ai

∫
Aj

}
|v2k

2k−1(y)− v2k

2k−1(z)|pK(y, z) dz dy.

(3.11)

Let y ∈ Ai and z ∈ Aj, where j − 1 > i ≥ −∞, and let k ∈ Z. Then

|v(y)− v(z)| ≥ |v(z)| − |v(y)| ≥ 2j−2

and |v2k

2k−1(y)− v2k

2k−1(z)| ≤ 2k, and so

|v2k

2k−1(y)− v2k

2k−1(z)| ≤ 4 · 2k−j|v(y)− v(z)|. (3.12)

On the other hand, the estimate

|v2k

2k−1(y)− v2k

2k−1(z)| ≤ |v(y)− v(z)|
holds for every k ∈ Z, and thus we conclude that inequality (3.12) holds whenever −∞ ≤ i ≤
k ≤ j and (y, z) ∈ Ai × Aj.

By inequality (3.12), we have∑
k∈Z

∑
−∞≤i≤k

∑
j≥k

∫
Ai

∫
Aj

|v2k

2k−1(y)− v2k

2k−1(z)|pK(y, z) dz dy

≤ 4p
∑
k∈Z

∑
−∞≤i≤k

∑
j≥k

2p(k−j)
∫
Ai

∫
Aj

|v(y)− v(z)|pK(y, z) dz dy.

(3.13)

Since
∑j

k=i 2
p(k−j) ≤ (1−2−p)−1, changing the order of the summation shows that the right-hand

side of inequality (3.13) is bounded by

4p

1− 2−p

∫
λB

∫
λB

|v(y)− v(z)|pK(y, z) dz dy.

The second sum on the right-hand side of (3.11) can be estimated in the same way. To conclude
that (B) holds with C2 = C(p, q)C1 it remains to recall that |u− b| = v+ +v− and q > 0. Observe
also that |v±(y)− v±(z)| ≤ |u(y)− u(z)| for all y, z ∈ λB. �

We also need certain maximal functions. If B ⊂ X is an (open) ball and u ∈ L1(B), then the
noncentred maximal function restricted to B is

M∗
Bu(x) = sup

B′

∫
B′
|u(y)| dy,

where the supremum is taken over all balls B′ ⊂ B containing x ∈ B. We will apply the following
lemma from [1, Lemma 3.12].

Lemma 3.3. Let B ⊂ X be a ball and let u ∈ L1(B). Then M∗
Bu is lower semicontinuous in B

and satisfies

µ(Eτ ) ≤
c3
D

τ

∫
Eτ

|u(x)| dx and lim
τ→∞

τµ(Eτ ) = 0,

where Eτ = {x ∈ B : M∗
Bu(x) > τ} and τ > 0.

The next theorem gives a sufficient condition for the fractional (s, q, p, p)-Poincaré inequality
with q = p∗ = Qp/(Q − sp). The proof is essentially the same as the argument in [1, pp. 95–
97], but we present the details for the sake of completeness. In particular, the fractional Maz′ya
truncation method is needed with sufficiently careful tracking of the constants. Recall that we
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assume throughout that µ is doubling, with constant cD ≥ 1 in (2.3). Hence, for any fixed
1 ≤ p < ∞ and 0 < s < 1 there exists an exponent Q > sp such that (2.4) holds, and then
p∗ = Qp/(Q− sp) > p. The exponent Q in (2.4) is not uniquely determined, and a smaller value
of Q > sp gives in Theorem 3.4 a larger exponent p∗, which in turn yields a stronger version of
the Sobolev–Poincaré inequality.

Theorem 3.4. Assume that µ is reverse doubling, with constants σ > 0 and cσ > 0 in (2.6),
and let Q > 0 and cQ > 0 be the constants in (2.4). Let 1 ≤ p < ∞ and 0 < s < 1 be such
that sp < Q, and let p∗ = Qp/(Q− sp). Then X supports a (s, p∗, p, p)-Poincaré inequality, with
constants λ = 2 and cP = cP (Q, p, s, σ, cD, cQ, cσ).

Proof. Let B = B(x0, r) be a ball in X and let u ∈ L∞(2B). It suffices to prove that there exists
a constant C = C(Q, p, s, σ, cD, cQ, cσ) such that

µ({x ∈ B : |u(x)− u2B| > t}) tp∗ ≤ Crsp
∗
µ(B)1−p∗/p

(∫
2B

gu,s,p,2B(y)p dy

) p∗
p

(3.14)

whenever t > 0. Then the (s, p∗, p, p)-Poincaré inequality follows from Theorem 3.2, applied with
the kernel

K(y, z) =
1

d(y, z)spµ(B(y, d(y, z)))
, y, z ∈ X,

together with the doubling property of µ and the inequality∫
B

|u(x)− uB|p dx ≤ 2p inf
a∈R

∫
B

|u(x)− a|p dx,

which in turn follows from Hölder’s inequality.
We prove (3.14) for a fixed t > 0. We may assume that r < 2 diam(X) and

0 <

∫
2B

gu,s,p,2B(y)p dy <∞. (3.15)

Indeed, if the integral in (3.15) vanishes, then u is a constant almost everywhere in the ball
B by the (s, p, p, p)-Poincaré inequality given in Lemma 2.2. Write B0 = 2B, r0 = 2r and
M = M∗

B0
((gu,s,p,2B)p). By [13, Lemma 1.8], µ-almost every point x ∈ B is a Lebesgue point of

u. Lemma 3.3 implies that the function M is finite µ-almost everywhere in B.
Let x ∈ B be a Lebesgue point of u, with M(x) <∞, and write rj = 2−jr and Bj = B(x, rj), for

j = 1, 2, . . .. By the doubling property of µ and the (s, 1, p, p)-Poincaré inequality in Lemma 2.2,

|u(x)− uB0| = lim
k→∞
|uBk − uB0| = lim

k→∞

∣∣∣∣∣
k−1∑
j=0

(uBj+1
− uBj)

∣∣∣∣∣
≤

∞∑
j=0

∫
Bj+1

|u(y)− uBj | dy ≤ c3
D

∞∑
j=0

∫
Bj

|u(y)− uBj | dy

≤ C(p, s, cD)
∞∑
j=0

rsj

(∫
Bj

gu,s,p,Bj(y)p dy

) 1
p

≤ C(p, s, cD)
∞∑
j=0

rsj

(∫
Bj

gu,s,p,2B(y)p dy

) 1
p

.

Condition (2.4), applied to the balls Bj ⊂ B0 on the right-hand side, gives

|u(x)− uB0| ≤ C(Q, p, s, cD, cQ)
rs

µ(B0)s/Q

∞∑
j=0

µ(Bj)
s/Q−1/p

(∫
Bj

gu,s,p,2B(y)p dy

) 1
p

︸ ︷︷ ︸
Σ′+Σ′′

. (3.16)
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We write the sum in (3.16) as Σ′ + Σ′′, where the summations are over 0 ≤ j < j0 and j ≥ j0,
respectively, and the cut-off number j0 ∈ N is chosen as follows (depending on x). Since B0 ⊂ 8B1

and

0 <

∫
B0

gu,s,p,2B(y)p dy ≤M(x) <∞,

there exists j0 ≥ 1 such that

c2
D µ(Bj0) ≤

1

M(x)

∫
B0

gu,s,p,2B(y)p dy ≤ c3
D µ(Bj0). (3.17)

More precisely, by (2.6) µ(Bj) → 0 as j → ∞, and hence we can choose the largest integer j0

for which the right inequality holds. The left inequality then follows from the doubling property
of µ.

In the first sum Σ′ we have µ(Bj) ≥ c−1
σ 2σ(j0−j)µ(Bj0) for every 0 ≤ j < j0, by (2.6). Since

s/Q− 1/p < 0, we obtain

Σ′ =

j0−1∑
j=0

µ(Bj)
s/Q−1/p

(∫
Bj

gu,s,p,2B(y)p dy

) 1
p

≤ C(Q, p, s, cσ)µ(Bj0)
s/Q−1/p

(∫
B0

gu,s,p,2B(y)p dy

) 1
p
j0−1∑
j=0

2σ(j0−j)(s/Q−1/p),

≤ C(Q, p, s, σ, cD, cσ)

(∫
B0

gu,s,p,2B(y)p dy

) s
Q

M(x)1/p−s/Q,

where the sum on the second line is bounded from above by a constant 0 < C(Q, p, s, σ) <∞ that
can be chosen to be independent of j0, and the last step follows from the right-hand inequality
in (3.17).

Correspondingly, in the second sum Σ′′ we have µ(Bj) ≤ cσ2σ(j0−j)µ(Bj0) for every j ≥ j0,
by (2.6). Using also the maximal function M = M∗

B0
((gu,s,p,2B)p), we obtain

Σ′′ =
∞∑
j=j0

µ(Bj)
s/Q

(∫
Bj

gu,s,p,2B(y)p dy

) 1
p

≤ C(Q, s, cσ)µ(Bj0)
s/QM(x)1/p

∞∑
j=j0

2σ(j0−j)s/Q,

≤ C(Q, p, s, σ, cD, cσ)

(∫
B0

gu,s,p,2B(y)p dy

) s
Q

M(x)1/p−s/Q,

where the last sum is bounded from above by a constant 0 < C(Q, s, σ) < ∞ and the final step
follows from the left-hand inequality in (3.17).

Substituting the above estimates for Σ′ and Σ′′ to (3.16) gives

|u(x)− uB0| ≤ C(Q, p, s, cD, cQ)
rs

µ(B0)s/Q
(Σ′ + Σ′′)

≤ C(Q, p, s, σ, cD, cQ, cσ) rs
(∫

B0

gu,s,p,2B(y)p dy

) s
Q

M(x)
1
p∗ ,

for p∗ = Qp/(Q− sp). In particular, if |u(x)− uB0| > t > 0, then

M(x) > C(Q, p, s, σ, cD, cQ, cσ)
tp
∗

rsp∗

(∫
B0

gu,s,p,2B(y)p dy

)− sp∗
Q

= τ(t) > 0.
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From this estimate, which is valid for µ-almost every x ∈ B, and Lemma 3.3, we obtain

µ({x ∈ B : |u(x)− uB0| > t}) tp∗ ≤ µ({x ∈ B0 : M(x) > τ(t)}) tp∗ ≤ c3
Dt

p∗

τ(t)

∫
B0

gu,s,p,2B(x)p dx

≤ C(Q, p, s, σ, cD, cQ, cσ) rsp
∗
µ(B)1−p∗/p

(∫
B0

gu,s,p,2B(x)p dx

) p∗
p

for every t > 0. Inequality (3.14) follows, and the proof is complete. �

4. Capacitary and boundary Poincaré inequalities

Next we study versions of fractional Poincaré inequalities, in which the zero sets of functions are
taken into account. As a tool we will apply a variant of the fractional relative capacity, compare
to [25, Definition 7.1] and see also [9] and [26, §11].

Definition 4.1. Let 0 < s < 1, 1 ≤ t, p < ∞, and Λ ≥ 2. Let B ⊂ X be a ball and let E ⊂ B
be a closed set. Then we write

caps,p,t(E, 2B,ΛB) = inf
ϕ

∫
ΛB

(∫
ΛB

|ϕ(x)− ϕ(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx

where the infimum is taken over all continuous functions ϕ : X → R that are integrable on balls,
such that ϕ(x) ≥ 1 for every x ∈ E and ϕ(x) = 0 for every x ∈ X \ 2B.

The following simple lemma is needed in the proof of Theorem 4.3.

Lemma 4.2. Let α > 0. There is a constant C(α, cD) > 0 such that

r−α
∫
B(x,r)

d(x, y)α

µ(B(x, d(x, y)))
dy ≤ C(α, cD)

for every x ∈ X and r > 0.

Proof. Let x ∈ X and r > 0. For each j ∈ {0, 1, . . .} we write

Aj(x, r) = {y ∈ X : 2−j−1r ≤ d(x, y) < 2−jr}.

By the doubling condition (2.3) of the measure µ and the standing assumption that µ({x}) = 0,
we obtain ∫

B(x,r)

d(x, y)α

µ(B(x, d(x, y)))
dy =

∞∑
j=0

∫
Aj(x,r)

d(x, y)α

µ(B(x, d(x, y)))
dy

≤
∞∑
j=0

(2−jr)α
µ(Aj(x, r))

µ(B(x, 2−j−1r))

≤
∞∑
j=0

(2−jr)α
µ(B(x, 2−jr))

µ(B(x, 2−j−1r))
≤ C(α, cD) rα. �

The next result is a fractional version of Maz′ya’s capacitary Poincaré inequality, compare to [1,
Theorem 6.21]. The argument is similar to that in [1], but there are several technical differences
due to the present non-local setting.

Theorem 4.3. Let q ≥ p ≥ 1, 0 < s < 1, 1 ≤ t < ∞ and Λ ≥ 2. Assume that X supports a
(s, q, p, t)-Poincaré inequality with constants cP > 0 and λ ≥ 1. Let u : X → R be a continuous
function and let

Z = {x ∈ X : u(x) = 0}.
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Then, for all balls B = B(x0, r) ⊂ X,(∫
ΛB

|u(x)|q dx
)p/q

≤ C(s, t, p, cD, cP ,Λ)

caps,p,t(B ∩ Z, 2B,ΛB)

∫
λΛB

gu,s,t,λΛB(x)p dx. (4.18)

Proof. By replacing u with uk = min{|u|, k}, for k ∈ N, applying Fatou’s lemma, and using
inequalities guk,s,t,λΛB ≤ gu,s,t,λΛB, we may assume that u ≥ 0 and that u is bounded. Fix a
ball B = B(x0, r) in X. Without loss of generality we may assume that the right-hand side of
inequality (4.18) is finite. Let

u =

(∫
ΛB

|u(x)|q dx
)1/q

<∞.

We may assume that u > 0, as otherwise there is nothing to prove.
Let η(x) = max{0, 1− dist(x,B)/r} for every x ∈ X. Then

|η(x)− η(y)| ≤ d(x, y)/r, for every x, y ∈ X,

0 ≤ η ≤ 1 in X, η = 1 in B and η = 0 outside 2B. The function ϕ = (1− u/u)η is bounded and
continuous, ϕ = 1 in B ∩ Z, and ϕ = 0 outside 2B. By Definition 4.1 of the capacity, we have

caps,p,t(B ∩ Z, 2B,ΛB) ≤
∫

ΛB

(∫
ΛB

|ϕ(x)− ϕ(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx

=
1

up

∫
ΛB

(∫
ΛB

|η(x)(u− u(x))− η(y)(u− u(y))|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx

=
1

up
I.

To estimate I, we write

I =

∫
ΛB

(∫
ΛB

|η(x)(u− u(x))− η(y)(u− u(x)) + η(y)(u− u(x))− η(y)(u− u(y))|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx

≤ C(t, p)

∫
ΛB

|u− u(x)|p
(∫

ΛB

|η(x)− η(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx

+ C(t, p)

∫
ΛB

(∫
ΛB

η(y)t
|u(y)− u(x)|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx.

Fix x ∈ ΛB. Since |η(x)− η(y)| ≤ d(x, y)/r for each y ∈ ΛB, by Lemma 4.2 we have∫
ΛB

|η(x)− η(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy ≤ r−t

∫
B(x,2Λr)

d(x, y)t(1−s)

µ(B(x, d(x, y)))
dy ≤ C(s, t, cD,Λ)r−st.

Taking also into account that 0 ≤ ηt ≤ 1 in ΛB, we obtain

I ≤ C(s, t, p, cD,Λ)r−sp
∫

ΛB

|u− u(x)|p dx+ C(t, p)

∫
ΛB

gu,s,t,ΛB(x)p dx.

Hence, we are left with estimating the following integral, with a = (q − p)/(pq),(∫
ΛB

|u− u(x)|p dx
)1/p

≤ µ(ΛB)a
(∫

ΛB

|u− u(x)|q dx
)1/q

≤ µ(ΛB)a
(∫

ΛB

|u(x)− uΛB|q dx
)1/q

+ |u− uΛB|µ(ΛB)a+1/q.
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The first step above relies on the assumption q ≥ p. The right-hand side can be estimated exactly
as in [1, pp. 144–145]. Indeed, the second term may be estimated by the first one, since

|u− uΛB|µ(ΛB)a+1/q = µ(ΛB)a
∣∣‖u‖Lq(ΛB) − ‖uΛB‖Lq(ΛB)

∣∣
≤ µ(ΛB)a‖u− uΛB‖Lq(ΛB) = µ(ΛB)a

(∫
ΛB

|u(x)− uΛB|q dx
)1/q

.

The first term is in turn estimated by the assumed (s, q, p, t)-Poincaré inequality,

µ(ΛB)a
(∫

ΛB

|u(x)− uΛB|q dx
)1/q

= µ(ΛB)1/p

(∫
ΛB

|u(x)− uΛB|q dx
)1/q

≤ cP r
s

(∫
λΛB

gu,s,t,λΛB(x)p dx

)1/p

.

This results in

I ≤ C(s, t, p, cD, cP ,Λ)

∫
λΛB

gu,s,t,λΛB(x)p dx,

and it follows that(∫
ΛB

|u(x)|qdx
)p/q

= up ≤ C(s, t, p, cD, cP ,Λ)

caps,p,t(B ∩ Z, 2B,ΛB)

∫
λΛB

gu,s,t,λΛB(x)p dx,

as required. �

Next we consider two notions that are closely related to the relative capacity but have a more
geometric flavor. The following concept of (co)dimension was introduced in [19].

Definition 4.4. Let E ⊂ X. For r > 0, the open r-neighborhood of E is the set

Er = {x ∈ X : dist(x,E) < r}.

The upper Assouad codimension of E, denoted by co dimA(E), is the infimum of all Q ≥ 0 for
which there is a constant c > 0 such that

µ(Er ∩B(x,R))

µ(B(x,R))
≥ c
( r
R

)Q
for every x ∈ E and all 0 < r < R < diam(E). If E consists of one point, then the restriction
R < diam(E) is removed.

If the measure µ is Q-regular, then co dimA(E) = Q− dimA(E) for all E ⊂ X, where dimA(E)
is the lower (Assouad) dimension of E; see [19, (3.11)]. In the Euclidean space Rn, which is
regular with Q = n, the connection between fractional Hardy inequalities and the lower Assouad
dimension (as well as its dual, the upper Assouad dimension) has been considered in [7, 8]; see
also [23].

We also need suitable versions of Hausdorff contents, which give lower bounds for capacities,
as in Lemma 4.6 below. In the case of non-fractional capacities, similar ideas can be found for
instance in [14, Theorem 5.9] and in several subsequent papers.

Definition 4.5. The (ρ-restricted) Hausdorff content of codimension η ≥ 0 is defined for sets
E ⊂ X by setting

Hµ,η
ρ (E) = inf

{∑
k

µ(B(xk, rk)) r
−η
k : E ⊂

⋃
k

B(xk, rk) and 0 < rk ≤ ρ

}
.



12 B. DYDA, J. LEHRBÄCK, AND A.V. VÄHÄKANGAS

Lemma 4.6. Let 0 < s < 1, 1 ≤ p, t < ∞, 0 ≤ η < p and Λ > 2. Assume that µ is reverse
doubling, with constants κ = 2/Λ and 0 < cR < 1 in (2.5). Let B = B(x0, r) ⊂ X be a ball with
r < diam(X)/(2Λ), and assume that E ⊂ B is a closed set. Then

Hµ,sη
5Λr (E) ≤ C(s, t, p, η, cR, cD,Λ)rs(p−η) caps,p,t(E, 2B,ΛB).

Proof. Fix x ∈ E and write B0 = ΛB = B(x0,Λr), r0 = Λr, rj = 2−j+1r and Bj = B(x, rj),
j = 1, 2, . . .. Observe that there are test functions for caps,p,t(E, 2B,ΛB); let ϕ be any one of
them. By replacing ϕ with max{0,min{ϕ, 1}}, if necessary, we may assume that 0 ≤ ϕ ≤ 1.
Thus ϕ is continuous on X, ϕ = 1 on E, and ϕ = 0 on B0 \ 2B. By inequality (2.5), we have

0 ≤ ϕB0 =

∫
B0

ϕ(y) dy ≤ µ(2B)

µ(ΛB)
≤ cR < 1.

As a consequence, since x ∈ E, we find that

|ϕ(x)− ϕB0| ≥ 1− cR > 0.

Let δ = s(p − η)/p > 0. Proceeding as in the proof of Theorem 3.4 with the (s, 1, p, t)-Poincaré
inequality given by Lemma 2.2, we obtain

∞∑
j=0

2−jδ = C(s, p, η, cR)(1− cR) ≤ C(s, p, η, cR)|ϕ(x)− ϕB0|

≤ C(s, t, p, η, cR, cD,Λ)
∞∑
j=0

rsj

(∫
Bj

gϕ,s,t,B0(y)p dy

) 1
p

.

In particular, there exists j ∈ {0, 1, 2, . . .}, depending on x, such that

2−jδp ≤ C(s, t, p, η, cR, cD,Λ)rspj

∫
Bj

gϕ,s,t,B0(y)p dy.

Write rx = rj and Bx = B(x, rx) = Bj. Then the previous estimate gives

µ(Bx)r
−sη
x ≤ C(s, t, p, η, cR, cD,Λ)rs(p−η)

∫
Bx

gϕ,s,t,B0(y)p dy.

By the 5r-covering lemma [1, Lemma 1.7], we obtain points xk ∈ E, k = 1, 2, . . ., such that the
balls Bxk ⊂ B0 = ΛB with radii rxk ≤ Λr are pairwise disjoint and E ⊂

⋃∞
k=1 5Bxk . Hence,

Hµ,sη
5Λr (E) ≤

∞∑
k=1

µ(5Bxk)(5rxk)
−sη ≤ C

∞∑
k=1

rs(p−η)

∫
Bxk

gϕ,s,t,B0(x)p dx

≤ Crs(p−η)

∫
ΛB

gϕ,s,t,ΛB(x)p dx,

where C = C(s, t, p, η, cR, cD,Λ). The desired inequality follows by taking infimum over all
functions ϕ as above. �

The main result of this section is the following version of the fractional (Sobolev–)Poincaré
inequality, where the mean value uB can be omitted from the integral on the left-hand side.
Due to the zero values on the set E, this kind of inequalities are often called boundary Poincaré
inequalities. The proof below requires completeness of X via [23, Lemma 5.1], which gives uniform
lower bounds for Hausdorff contents under the assumption that co dimA(E) < sp. Hence, in
the forthcoming applications of Theorem 4.7 we also make the assumption that the space X is
complete. Alternatively, in the following results the condition co dimA(E) < sp could be replaced
by an explicit condition in terms of the relative capacity or a suitable Hausdorff content, and
then the completeness assumption would not be needed. However, in non-complete spaces one



FRACTIONAL POINCARÉ AND HARDY INEQUALITIES 13

then has to add to Theorems 5.1 and 5.2 also the assumption that the continuous function u is
integrable on balls.

Theorem 4.7. Let q ≥ p ≥ 1, 0 < s < 1 and 1 ≤ t < ∞. Assume that the space X is
complete and supports a (s, q, p, t)-Poincaré inequality, with constants cP and λ ≥ 1, and that µ
is reverse doubling, with constants 0 < κ < 1 and 0 < cR < 1 in (2.5). Let E be a closed set with
co dimA(E) < sp. Then there is a constant C > 0 such that(∫

B

|u(x)|q dx
)p/q

≤ CRsp

∫
λB

(∫
λB

|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy

)p/t
dx (4.19)

whenever u : X → R is a continuous function such that u = 0 on E and B = B(w,R) is a ball
with w ∈ E and 0 < R < diam(E)/2.

Note that (4.19) can be written as(∫
B

|u(x)|q dx
)p/q

≤ CRsp

∫
λB

gu,s,t,λB(x)p dx.

Proof. Fix a number 0 ≤ η < p such that co dimA(E) < sη, and let w ∈ E and 0 < R <
diam(E)/2. Write Λ = 2/κ > 2 and r = R/Λ < diam(E)/(2Λ) ≤ diam(X)/(2Λ). We prove the
claim (4.19) for the ball B(w,R), but for simplicity we write during the proof that B = B(w, r) =
B(w,R/Λ).

By a covering argument using the doubling condition and completeness ofX, see [23, Lemma 5.1],
we obtain

r−sηµ(B) ≤ CHµ,sη
r (B ∩ E) ≤ CHµ,sη

5Λr (B ∩ E)

≤ Crs(p−η) caps,p,t(B ∩ E, 2B,ΛB).

Write Z = {y ∈ X : u(y) = 0} ⊃ E. By the monotonicity of capacity and the doubling condition
we have

1

caps,p,t(B ∩ Z, 2B,ΛB)
≤ 1

caps,p,t(B ∩ E, 2B,ΛB)
≤ Crsp

µ(B)
≤ CRsp

µ(λΛB)
.

The desired inequality, for the ball B(w,R) = B(w,Λr), follows from Theorem 4.3. �

Corollary 4.8. Assume that X is complete. Let Q > 0 and cQ > 0 be the constants in (2.4), and
let q, p ≥ 1, 0 < s < 1 and 1 ≤ t <∞ be such that either q ≤ p ≤ t, or q ≤ p∗ = Qp/(Q−sp) <∞
and t = p. Assume that µ is reverse doubling, and let E be a closed set with co dimA(E) < sp.
Then there is a constant C > 0 such that the boundary Poincaré inequality (4.19) holds whenever
u : X → R is a continuous function such that u = 0 on E and B = B(w,R) is a ball with w ∈ E
and 0 < R < diam(E)/2.

Proof. By Lemma 2.2, X supports a (s, q, p, t)-Poincaré inequality whenever q ≤ min{p, t}. In
particular X supports a (s, p, p, t)-Poincaré inequality whenever p ≤ t, and for q ≤ p ≤ t the
claim then follows from Theorem 4.7 and Hölder’s inequality on the left-hand side.

On the other hand, X supports a (s, p∗, p, p)-Poincaré inequality by Theorem 3.4. Theorem 4.7
gives the desired inequality for q = p∗ and t = p, and for q ≤ p∗ and t = p the claim follows again
from Hölder’s inequality on the left-hand side. �

5. Pointwise and integral Hardy inequalities

In this section we apply the Sobolev–Poincaré and boundary Poincaré inequalities from the
previous sections to fractional Hardy-type inequalities involving distance weights. We begin with
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a pointwise version of the fractional Hardy inequality, given in terms of the fractional maximal
function. For α ∈ R and a measurable function u on X, this is defined as

Mαu(x) = sup
r>0

rα
∫
B(x,r)

|u(y)| dy, for every x ∈ X.

In particular, if α = 0, then Mα = M0 = M is the centered Hardy–Littlewood maximal function.

Theorem 5.1. Let α ∈ R, q ≥ p ≥ 1, α < s < 1 and 1 ≤ t <∞. Assume that X is complete and
supports a (s, q, p, t)-Poincaré inequality and that µ is reverse doubling. Let E ⊂ X be a closed
set with co dimA(E) < sp, and assume that u : X → R is a continuous function such that u = 0
on E. Then there is a constant C > 0, independent of u, such that

|u(x)| ≤ Cd(x,E)s−α
(
Mαp

(
χ
B (gu,s,t,B)p

)
(x)
)1/p

whenever 0 < d(x,E) < diam(E) and B = B(x, 2d(x,E)).

Proof. Observe that the continuous function u is integrable on balls since X is complete, see [1,
Proposition 3.1]. Fix x ∈ X with 0 < d(x,E) < diam(E) and let B = B(x, 2d(x,E)). Write
r = 2d(x,E) > 0 and choose w ∈ E such that d(x,w) < (3/2)d(x,E). Then

B̃ = B(w, r/(4λ)) ⊂ B,

where λ ≥ 1 is the constant in the assumed (s, q, p, t)-Poincaré inequality, and

|u(x)| = |u(x)− uB + uB − uB̃ + uB̃| ≤ |u(x)− uB|+ |uB − uB̃|+ |uB̃|. (5.20)

We estimate each of the terms on the right-hand side separately.

First observe that λB̃ ⊂ B and that the measures of these two balls are comparable, with

constants only depending on cD. Hence, by applying Theorem 4.7 for the ball B̃, whose radius is
r/(4λ) < diam(E)/2, we obtain

|uB̃| ≤
(∫

B̃

|u(y)|q dy
)1/q

≤ Crs−α
(
rαp
∫
λB̃

χ
B (y)gu,s,t,λB̃(y)p dy

)1/p

≤ Crs−α
(
rαp
∫
B

χ
B (y)gu,s,t,B(y)p dy

)1/p

≤ Cd(x,E)s−α
(
Mαp

(
χ
B (gu,s,t,B)p

)
(x)
)1/p

.

Recall from Lemma 2.2 that X supports a (s, 1, p, t)-Poincaré inequality, with constants λ = 1 and
C(s, t, cD). By the doubling condition, followed by the (s, 1, p, t)-Poincaré inequality, we obtain

|uB − uB̃| ≤ C

∫
B

|u(y)− uB| dy ≤ Crs−α
(
rαp
∫
B

χ
B (y)gu,s,t,B(y)p dy

)1/p

≤ Cd(x,E)s−α
(
Mαp

(
χ
B (gu,s,t,B)p

)
(x)
)1/p

.
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In order to estimate the term |u(x)− uB|, we write Bj = 2−jB = B(x, 2−jr) for j = 0, 1, 2, . . ..
Since limj→∞ uBj = u(x), we find that

|u(x)− uB| ≤
∞∑
j=0

|uBj − uBj+1
| ≤ C

∞∑
j=0

∫
Bj

|u(y)− uBj | dy

≤ C

∞∑
j=0

(2−jr)s
(∫

Bj

gu,s,t,Bj(y)p dy

)1/p

≤ Crs−α
∞∑
j=0

2−j(s−α)

(
(2−jr)αp

∫
Bj

χ
B (y)gu,s,t,B(y)p dy

)1/p

≤ Crs−α
∞∑
j=0

2−j(s−α)
(
Mαp

(
χ
B (gu,s,t,B)p

)
(x)
)1/p

= Cd(x,E)s−α
(
Mαp

(
χ
B (gu,s,t,B)p

)
(x)
)1/p

.

The claim follows from (5.20) and the estimates above. �

Pointwise Hardy inequalities imply localized Hardy inequalities for balls centered at E. Here
we restrict ourselves to the case q = p.

Theorem 5.2. Let 0 < s < 1 and 1 < t <∞. Assume that X is complete and that µ is reverse
doubling. Let E ⊂ X be a closed set with co dimA(E) < st, and let u : X → R be a continuous
function such that u = 0 on E. Then there is a constant C > 0, independent of u, such that∫

B\E

|u(x)|t

d(x,E)st
dx ≤ C

∫
3B

∫
3B

|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy dx

whenever B = B(w, r) with w ∈ E and 0 < r < diam(E).

Proof. Fix an exponent 1 ≤ p < t in such a way that co dimA(E) < sp. By Lemma 2.2 we find that
X supports the (s, p, p, t)-Poincaré inequality with constants λ = 1 and cP = cP (s, p, t, cD). Fix
x ∈ B \ E. Then 0 < d(x,E) < r < diam(E) and B(x, 2d(x,E)) ⊂ 3B. Hence, by Theorem 5.1
with α = 0 and q = p,

|u(x)|t

d(x,E)st
≤ C

(
M
(
χ
B(x,2d(x,E)) (gu,s,t,B(x,2d(x,E)))

p
)
(x)
)t/p

≤ C
(
M
(
χ

3B (gu,s,t,3B)p
)
(x)
)t/p

.

Integrating this inequality over the set B \ E we obtain∫
B\E

|u(x)|t

d(x,E)st
dx ≤ C

∫
X

(
M
(
χ

3B (gu,s,t,3B)p
)
(x)
)t/p

dx.

Since t > p, the Hardy–Littlewood maximal theorem [1, Theorem 3.13] implies that∫
B\E

|u(x)|t

d(x,E)st
dx ≤ C

∫
3B

gu,s,t,3B(x)t dx.

This concludes the proof. �

Next, we obtain a (partial) converse of Theorem 5.2. This shows that the dimensional condition
co dimA(E) < st in Theorems 5.1 and 5.2 is essentially sharp, up to the end point. The idea behind
the proof goes back to [4, Section 2], where the impossibility of a fractional Hardy inequality was
shown in certain open sets Ω of the Euclidean space, for instance if Ω is a Lipschitz domain and
st ≤ 1 (note that in this case co dimA(∂Ω) = 1). On the other hand, a necessary condition for
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non-fractional pointwise Hardy inequalities in metric spaces has been given in [21, Lemma 3] in
terms of a Hausdorff content density condition.

Theorem 5.3. Let 0 < s < 1, 1 < t < ∞, and λ ≥ 1. Assume that E ⊂ X is a (nonempty)
closed set such that∫

B\E

|u(x)|t

d(x,E)st
dx ≤ C

∫
λB

∫
λB

|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy dx

whenever u : X → R is a bounded continuous function such that u = 0 on E, and B = B(w, r)
with w ∈ E and 0 < r < diam(E). Then co dimA(E) ≤ st.

Proof. Let w ∈ E and 0 < r < R0 < diam(E). It suffices to show that

µ(Er ∩B(w,R0))

µ(B(w,R0))
≥ c
( r

R0

)st
, (5.21)

where the constant c is independent of w, r and R0. For convenience, write R = R0/λ and
B = B(w,R), so that λB = B(w,R0).

If µ(Er ∩B(w,R)) ≥ 1
2
µ(B(w,R)), the claim is clear since then, by doubling,

µ(Er ∩B(w,R0)) ≥ µ(Er ∩B(w,R)) ≥ 1
2
µ(B(w,R)) ≥ cµ(B(w,R0)),

and on the other hand
(
r
R0

)st ≤ 1. Thus we may assume that µ(Er ∩ B(w,R)) < 1
2
µ(B(w,R)),

whence
µ(B(w,R) \ Er) ≥ 1

2
µ(B(w,R)) > 0. (5.22)

Notice that then in particular r < R = R0/λ since otherwise B(w,R) \ Er = ∅.
Let us now consider the continuous and bounded function u : X → R,

u(x) = min{1, 4r−1d(x,E)}, x ∈ X.
Then u = 0 on E, u = 1 in X \ Er/4, and

|u(x)− u(y)| ≤ min
{

1, 4r−1d(x, y)
}

for all x, y ∈ X.
Since d(x,E)−st ≥ R−st for x ∈ B(w,R) \ Er, we obtain∫

B\E

|u(x)|t

d(x,E)st
dx ≥

∫
B\Er

d(x,E)−st dx ≥ R−stµ(B(w,R) \ Er)

≥ 1
2
R−stµ(B(w,R)) ≥ cR−st0 µ(B(w,R0)),

(5.23)

where the penultimate step follows from (5.22) and the final inequality holds by doubling.
To prove the claim (5.21), it hence suffices to show that∫

λB

∫
λB

|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy dx ≤ Cr−stµ(Er ∩B(w,R0)). (5.24)

Then (5.21) follows directly from estimates (5.23) and (5.24) and the assumed local fractional
Hardy inequality.

Write

K(x, y) =
|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))

whenever x, y ∈ λB, x 6= y. Since u(x) = 1 for x ∈ λB \ Er/4, and K(x, y) ≤ cDK(y, x) by
doubling for x, y ∈ λB, x 6= y, we have∫

λB

∫
λB

K(x, y) dy dx ≤
∫
Er∩λB

∫
Er∩λB

K(x, y) dy dx+ (1 + cD)

∫
λB\Er

∫
Er/4∩λB

K(x, y) dy dx

=: I1 + (1 + cD)I2.

Define
Fk = {x ∈ λB : 2−k ≤ d(x,E) < 2−k+1}
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and

Aj(x) = {y ∈ λB : 2−j−1 ≤ d(y, x) < 2−j},

for k, j ∈ Z and x ∈ λB. Let also k1, k2 ∈ Z be such that

2−k1−1 ≤ λR < 2−k1 and 2−k2 ≤ r < 2−k2+1.

When k ≤ k2 and x ∈ Fk, it holds that Er/4 ∩ Aj(x) = ∅ for all j ≥ k + 1. Using the estimate
|u(x)− u(y)| ≤ 1 and changing also the orders of summation and integration, we thus obtain

I2 ≤
k2∑

k=k1

∫
Fk

k∑
j=k1−1

∫
Er/4∩Aj(x)

1

2−(j+1)stµ(B(x, d(x, y)))
dy dx

≤ C

k2∑
j=k1−1

2jst
∫
Er∩λB

k2∑
k=j

∫
{x∈Fk:y∈Aj(x)}

1

µ(B(x, d(x, y)))
dx dy.

But if y ∈ Aj(x), then d(x, y) < 2−j and so

k2⋃
k=j

{x ∈ Fk : y ∈ Aj(x)} ⊂ B(y, 2−j).

Since B(y, d(x, y)) ⊂ B(x, 2d(x, y)), we obtain by doubling that (still for y ∈ Aj(x))

µ(B(y, 2−j)) ≤ cDµ(B(y, 2−j−1)) ≤ cDµ(B(y, d(x, y)))

≤ cDµ(B(x, 2d(x, y))) ≤ c2
Dµ(B(x, d(x, y))).

We conclude that

I2 ≤ C

k2∑
j=k1−1

2jst
∫
Er∩λB

∫
B(y,2−j)

1

µ(B(y, 2−j))
dx dy

≤ C

k2∑
j=k1−1

2jstµ(Er ∩ λB) ≤ C2k2stµ(Er ∩ λB) ≤ Cr−stµ(Er ∩ λB).

On the other hand, since |u(x) − u(y)|t ≤ min{1, 4tr−td(x, y)t} for all x, y ∈ λB, integral I1

can be estimated as follows:

I1 ≤
∫
Er∩λB

∞∑
j=k1−1

∫
Er∩Aj(x)

|u(x)− u(y)|t

d(x, y)stµ(B(x, d(x, y)))
dy dx

≤
∫
Er∩λB

k2∑
j=k1−1

∫
Er∩Aj(x)

1

2−(j+1)stµ(B(x, d(x, y)))
dy dx

+ C

∫
Er∩λB

∞∑
j=k2

∫
Er∩Aj(x)

r−td(x, y)t

d(x, y)stµ(B(x, d(x, y)))
dy dx.

(5.25)

In the first integral on the right-hand side of (5.25)∫
Er∩Aj(x)

1

2−(j+1)stµ(B(x, d(x, y)))
dy ≤ 1

2−(j+1)st

∫
Aj(x)

1

µ(B(x, 2−j−1))
dy ≤ C2jst
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since the measures of the balls B(x, 2−j) and B(x, 2−j−1) are comparable, while in the second
integral on the right-hand side of (5.25)

∞∑
j=k2

∫
Er∩Aj(x)

r−td(x, y)t

d(x, y)stµ(B(x, d(x, y)))
dy ≤

∞∑
j=k2

r−t
∫
Aj(x)

d(x, y)t(1−s)

µ(B(x, d(x, y)))
dy

≤ r−t
∞∑
j=k2

2−jt(1−s)
∫
B(x,2−j)

1

µ(B(x, 2−j−1))
dy

≤ Cr−t2−k2t(1−s) ≤ Cr−trt(1−s) = Cr−st.

Here we had again a converging geometric series since t(1− s) > 0.
Substituting the above two estimates to (5.25), we obtain

I1 ≤ C

∫
Er∩λB

k2∑
j=k1−1

2jst dx+ C

∫
Er∩λB

r−st dx

≤ C

∫
Er∩λB

(
2k2st + r−st

)
dx ≤ Cr−stµ(Er ∩ λB).

As λB = B(w,R0), we conclude that I1 + (1 + cD)I2 ≤ Cr−stµ(Er ∩ B(w,R0)), and this proves
the claim. �
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