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1. Introduction to Hardy inequalities
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The original p-Hardy inequality

G.H. Hardy published in 1925 the inequality:∫ ∞
0

(
1

x

∫ x

0
f (t) dt

)p

dx ≤
(

p

p − 1

)p ∫ ∞
0

f (x)p dx ,

where 1 < p <∞ and f ≥ 0 is measurable.

Taking u(x) =
∫ x

0 f (t) dt, the above p-Hardy inequality can be written as∫ ∞
0

|u(x)|p

xp
dx ≤

(
p

p − 1

)p ∫ ∞
0
|u′(x)|p dx ,

where 1 < p <∞ and u is absolutely continuous with u(0) = 0.
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Hardy inequalities in Rn

The 1-dimensional p-Hardy inequality∫ ∞
0
|u(x)|px−p dx ≤

(
p

p − 1

)p ∫ ∞
0
|u′(x)|p dx

can be generalized to higher dimensions in many ways.
We consider the following p-Hardy inequality in Rn:∫

Ω
|u(x)|pδ∂Ω(x)−p dx ≤ C

∫
Ω
|∇u(x)|p dx .

Here Ω ⊂ Rn is an open set, u ∈ C∞0 (Ω), and δ∂Ω(x) = dist(x , ∂Ω).

In addition, we are interested in the weighted (p, β)-Hardy inequality∫
Ω
|u(x)|p δ∂Ω(x)β−p dx ≤ C

∫
Ω
|∇u(x)|pδ∂Ω(x)β dx . (1)

If there is C > 0 such that inequality (1) holds for all u ∈ C∞0 (Ω), we say
that Ω admits a (p, β)-Hardy inequality.
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Sufficient conditions for Hardy inequalities

The following are well known for weighted Hardy inequalities:

Theorem (Nečas 1962)

Let 1 < p <∞ and let Ω ⊂ Rn be a bounded Lipschitz domain.
Then Ω admits a (p, β)-Hardy inequality for all β < p − 1 (sharp).

However, the “smoothness” of the boundary is not that relevant:

Theorem (Wannebo 1990)

Let 1 < p <∞ and assume that Ωc is uniformly p-fat. Then there exists
β0 > 0 such that Ω admits a (p, β)-Hardy inequality for all β < β0.

In the unweighted case β = 0, this result was first proven in [Ancona 1986,
p = 2] and [Lewis 1988, 1 < p <∞]; the latter is independent of
[Wannebo 1990]). Note: the complement Ωc = Rn \ Ω of a Lipschitz
domain Ω is uniformly p-fat for all p ≥ 1.
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Sufficient conditions for Hardy inequalities, pt. 2

On the other hand, an open set Ω ⊂ Rn can admit a (p, β)-Hardy
inequality also if the complement Ωc is small enough (contrary to the
p-fatness condition).

The following is a combination of results from [Aikawa 1991],
[Koskela–Zhong 2003], and [L. 2008]. Here we say that E ⊂ Rn satisfies
the Aikawa condition for s ≥ 0, and write s ∈ A(E ), if there is C > 0 such
that ∫

B(x ,r)
dist(y ,E )s−n dy ≤ Cr s

holds for all x ∈ E and 0 < r < diam(E ).

Theorem

Let 1 < p <∞ and assume that n − p ∈ A(Ωc). Then Ω admits a
p-Hardy inequality (sharp).
Moreover, if n− p + β ∈ A(Ωc) and Ω satisfies an additional ‘accessibility’
condition (John-type), then Ω admits a (p, β)-Hardy inequality.
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2. Density conditions and notions of dimension
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Fatness and thickness

Uniform p-fatness is a capacitary condition, but this can be expressed
equivalently using density conditions for Hausdorf contents.

Recall that the Hausdorff (%-)content of dimension λ, for E ⊂ Rn, is

Hλ%(E ) = inf

{∑
k

rλk : E ⊂
⋃
k

B(xk , rk), xk ∈ E , 0 < rk ≤ %
}
.

The λ-Hausdorff measure of E is Hλ(E ) = lim
%→0
Hλ%(E ) and the Hausdorff

dimension of E is dimH(A) = inf{λ ≥ 0 : Hλ(∞)(A) = 0}.

We say that a (closed) set E ⊂ Rn is λ-thick, if there exists C > 0 so that

Hλ∞
(
E ∩ B(w , r)

)
≥ Crλ for all r > 0, w ∈ E .

It is known that

Theorem

A closed set E ⊂ Rn is uniformly p-fat, for 1 < p <∞, if and only if E is
λ-thick for some λ > n − p.
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Assouad dimensions

The above thickness and Aikawa conditions are closely related to the
following Assouad dimensions:

Let E ⊂ Rn. Consider all exponents λ ≥ 0 for which there is C ≥ 1 such
that E ∩ B(w ,R) can be covered by at most C (r/R)−λ balls of radius r
for all 0 < r < R < diam(E ) and w ∈ E .

The infimum of such exponents λ is the (upper) Assouad dimension
dimA(E ) (or often simply dimA(E ))

Conversely: consider all λ ≥ 0 for which there is c > 0 such that if
0 < r < R < diam(E ), then for every w ∈ E at least c(r/R)−λ balls of
radius r are needed to cover E ∩ B(w ,R).

The supremum of all such λ is the lower Assouad dimension dimA(E ).
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Some comments on Assouad dimensions

(Upper) Assouad dimension was introduced by P. Assouad around 1980 in
connection to bi-Lipschitz embedding problem between metric and
Euclidean spaces. However, equivalent (or closely related) concepts have
appeared under different names, e.g. (uniform) metric dimension, some
dating back (at least) to [Bouligand 1928]. See [Luukkainen 1998] for a
nice account on the basic properties of (upper) Assouad dimension as well
as some historical comments.

Lower Assouad dimension has (essentially) appeared under names lower
dimension, minimal dimensional number, and uniformity dimension. Some
basic properties of this have recently been discussed in [Fraser 2014] and
[Käenmäki–L.–Vuorinen 2013].
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Minkowski and Assouad

Once again:
dimA(E ) is the infimum of λ ≥ 0 s.t. E ∩B(w ,R) can (always) be covered
by at most C (r/R)−λ balls of radius 0 < r < R < diam(E )

dimA(E ) is the supremum of λ ≥ 0 s.t. (always) at least C (r/R)−λ balls
of radius 0 < r < R < diam(E ) are needed to cover E ∩ B(w ,R)

For comparison, recall the upper and lower Minkowski dimensions of a
compact E ⊂ Rn:

dimM(E ) is the infimum of λ ≥ 0 s.t. E can be covered
by at most Cr−λ balls of radius 0 < r < diam(E )

dimM(E ) is the supremum of λ ≥ 0 s.t. at least Cr−λ balls
of radius 0 < r < diam(E ) are needed to cover E .

Thus dimA(E ) ≤ dimM(E ) ≤ dimM(E ) ≤ dimA(E ).
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Examples (1)

General idea: Assouad dimensions reflect the ‘extreme’ behavior of sets
and take into account all scales 0 < r < d(E ).

If E = {0} ∪ [1, 2] ⊂ R, then dimA(E ) = 0 and dimA(E ) = 1
(dimM(E ) = dimM(E ) = 1).

dimA(Z) = 0 and dimA(Z) = 1.

If E =
{

1
j : j ∈ N

}
∪ {0} ⊂ R ⊂ Rn, then then dimA(E ) = 0 and

dimA(E ) = 1 ( dimM(E ) = dimM(E ) = 1
2 ).

0 1/4 1/3 1/2 1
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Examples (2)

If S ⊂ R2 is an unbounded, locally rectifiable von Koch snowflake
-type curve consisting of unit intervals, then dimA(S) = 1 and
dimA(E ) = log 4/ log 3 (flat on small scales, fractal on large scales)

If S ⊂ R2 consists of infinitely many copies of the usual (fractal) von
Koch snowflake curve, laid side by side, then dimA(S) = 1 and
dimA(E ) = log 4/ log 3 (fractal on small scales, flat on large scales).
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Hausdorff, lower Assouad, and thickness

It can be shown that if E ⊂ Rn is closed, then dimA(E ) ≤ dimH(E ∩B) for
all balls B centered at E . (However, e.g. dimA(Q) = 1 but dimH(Q) = 0.)

In particular dimA(E ) ≤ dimH(E ) for all closed sets E ⊂ Rn.

The proof of dimA(E ) ≤ dimH(E ∩ B) is actually based on the fact that
for each 0 < λ < dimA(E )

Hλ∞
(
E ∩ B(w , r)

)
≥ Crλ for all w ∈ E , 0 < r < diam(E ). (2)

In fact, for closed E ⊂ Rn we have dimA(E ) = sup{λ ≥ 0 : (2) holds}, and
thus for unbounded E ⊂ Rn it holds that

dimA(E ) = sup{λ ≥ 0 : E is λ-thick}.
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Aikawa and upper Assouad

Recall the Aikawa condition s ∈ A(E ) for s ≥ 0: There is C > 0 such that∫
B(x ,r)

dist(y ,E )s−n dy ≤ Cr s

for all x ∈ E and 0 < r < diam(E ).

In [L.–Tuominen 2013] it was shown that the (upper) Assouad dimension
dimA(E ) of E ⊂ Rn can be characterized as

dimA(E ) = inf{s ≥ 0 : s ∈ A(E )}.
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3. Results for Hardy inequalities
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Sufficient conditions for Hardy inequalities

Using Assouad dimensions we can formulate the following sufficient
condition for Hardy inequalities. (Also metric space versions of this exist.)

Theorem (L. Jd’AM (to appear))

Let 1 < p <∞ and β < p − 1, and let Ω ⊂ Rn be an open set. If

dimA(Ωc) < n − p + β or dimA(Ωc) > n − p + β,

then Ω admits a (p, β)-Hardy inequality;
in the latter case, if Ω is unbounded, then also Ωc has to be unbounded.

For β = 0, the first condition is a reformulation of the Aikawa condition
and the second is a reformulation of the uniform p-fatness condition!

The requirement β < p − 1 is optimal for this generality (but it can be
removed under additional accessibility conditions). However, it is not
‘natural’ for the first condition if dimA(Ωc) < n − 1.
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A precise statement under uniform fatness

Condition dimA(Ωc) > n − p + β (or equivalently λ-thickness for
λ > n − p + β) yields the following corollary in terms of uniform fatness:

Corollary (L. PAMS (2014))

Assume that Ωc is uniformly q-fat for all q > s ≥ 1. Then Ω admits a
(p, β)-Hardy inequality whenever 1 < p <∞ and β < β0 = p − s (sharp).

For instance, if Ω ⊂ R2 is simply connected, then Ω admits a (p, β)-Hardy
inequality whenever β < p − 1 (Nečas had this for Lipschitz domains).

The idea of the proof of this part is quite simple if β ≥ 0: by the
assumption, Ωc is uniformly (p − β)-fat, and so Ω admits a (p − β)-Hardy
inequality. Then, given u ∈ C∞0 (Ω), we can use the (p − β)-Hardy
inequality for the test function v = |u|β/(p−β), and the (p, β)-inequality for
u follows with a simple calculation using Hölder’s inequality.
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Necessary conditions for Hardy inequalities

On the other hand, the following necessary condition, complementing the
sufficient conditions, is (essentially) due to [Koskela–Zhong 2003, β = 0]
and [L. 2008, β 6= 0].

Theorem

Assume that 1 < p <∞ and β 6= p, and that Ω ⊂ Rn admits a
(p, β)-Hardy inequality. Then

dimA(Ωc) < n − p + β or dimH(Ωc) > n − p + β .

Recall that always dimA(Ωc) ≤ dimH(Ωc), and dimA(Ωc) > n − p + β is
sufficient for (p, β)-Hardy. (Can not change dimA(Ωc)↔ dimH(Ωc).)

The boundary dichotomy holds also locally: if Ω ⊂ Rn admits a
(p, β)-Hardy inequality, then for all balls B ⊂ Rn either

dimA(B ∩ Ωc) < n − p + β or dimH(2B ∩ Ωc) > n − p + β.
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Combining thick and thin parts

In accordance with the above local necessary conditions, it is possible to
give also sufficient conditions with a mixture of ‘thick’ and ’thin’ parts, for
instance as follows:

Theorem (L. Jd’AM (to appear))

Let 1 < p <∞ and β < p − 1. Assume that Ω0 ⊂ Rn is an open set
satisfying

dimA(Ωc) > n − p + β,

and that F ⊂ Ω0 is a closed set with

dimA(F ) < n − p + β.

Then a (p, β)-Hardy inequality holds in Ω = Ω0 \ F for all u ∈ C∞0 (Ω0).
In particular, Ω admits a (p, β)-Hardy inequality.
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4. Hardy–Sobolev inequalities
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Hardy and Sobolev inequalities

Let Ω ⊂ Rn be an open set, let 1 ≤ p < n, and denote p∗ = np/(n − p).
Then there is C > 0 such that the Sobolev inequality(∫

Ω
|u|p∗dx

)1/p∗

≤ C

(∫
Ω
|∇u|p dx

)1/p

holds for all u ∈ C∞0 (Ω).
On the other hand, we have the p-Hardy inequality∫

Ω
|u|p δ−p

∂Ω dx ≤ C

∫
Ω
|∇u|p dx

and the weighted (p, β)-Hardy inequality∫
Ω
|u|p δβ−p

∂Ω dx ≤ C

∫
Ω
|∇u|p δβ∂Ω dx ,

which are not valid in all open sets Ω ⊂ Rn.
What is the connection between these?
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Hardy–Sobolev inequalities

The following Hardy–Sobolev inequalities form a natural interpolating
scale in between the (weighted) Sobolev inequalities and the (weighted)
Hardy inequalities.

We say that an open set Ω ( Rn admits a (q, p, β)-Hardy–Sobolev
inequality if there is C > 0 such that(∫

Ω
|u|q δ(q/p)(n−p+β)−n

∂Ω dx

)1/q

≤ C

(∫
Ω
|∇u|p δβ∂Ω dx

)1/p

(3)

for all u ∈ C∞0 (Ω).

Notice that the Sobolev inequality is the case q = p∗ = np/(n − p), β = 0
in (3) and the weighted (p, β)-Hardy inequality is the case q = p in (3).
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Some history of HS-inequalities

When E ⊂ Rn is an m-dimensional subspace, 1 ≤ m ≤ n − 1, Ω = Rn \ E ,
and m < q

p (n − p + β), the global version of the (q, p, β)-Hardy–Sobolev
inequality (for all u ∈ C∞0 (Rn)) is due to [Maz’ya 1985].

[Badiale–Tarantello 2002] (essentially) rediscovered Maz’ya’s result for
β = 0, and applied this (case m = 1) to study the properties of the
solutions of certain elliptic PDE’s “related to the dynamics of galaxies”.
(More precisely,

−∆u(x) = φ(r)|u|p−2u,

where x = (x1, x2, x3) ∈ R3, r = ‖(x1, x2)‖, u = u(r , x3) > 0, and φ ≥ 0
vanishes at 0 and at ∞).

For m = 0, i.e. E = {0}, the corresponding Hardy–Sobolev inequality is
known as Caffarelli–Kohn–Nirenberg inequality, since this case first
appeared in [CKN 1984].
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“Interpolation”

In [L.–Vähäkangas 2015 (preprint)] we show that Hardy–Sobolev
inequalities can be obtained from the (weighted) Hardy inequality with the
help of the (unweighted) Sobolev inequality:

Theorem (LV. 2015)

Assume that 1 ≤ p < n and β ∈ R. If Ω admits a (p, p, β)-Hardy–Sobolev
inequality (i.e., a (p, β)-Hardy inequality), then Ω admits
(q, p, β)-Hardy–Sobolev inequalities for all exponents p ≤ q ≤ p∗.
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Proof of the interpolation theorem

Step 1: (p, p, β)-HS =⇒ (p∗, p, β)-HS (weighted Sobolev).

Let u ∈ C∞0 (Ω) and denote g = |u|δβ/p∂Ω ∈ Lip0(Ω). Then using the
Sobolev inequality for g and the (p, p, β)-HS inequality for u we obtain(∫

Ω
|u|p∗δ

nβ
n−p

∂Ω

)1/p∗

=

(∫
Ω
|g |p∗

)1/p∗

.

(∫
Ω
|∇g |p

)1/p

.

(∫
Ω
|∇u|pδβ∂Ω

)1/p

+

(∫
Ω
|u|pδβ−p

∂Ω

)1/p

.

(∫
Ω
|∇u|pδβ∂Ω

)1/p

Step 2: The (p, p, β)- and (p∗, p, β)-HS inequalities and Hölder’s
inequality yield (q, p, β)-HS inequalities for all p ≤ q ≤ p∗ :(∫

Ω
|u|q δ(q/p)(n−p+β)−n

∂Ω

)1/q

≤
(∫

Ω
|u|p δβ−p

∂Ω

) 1
qα
(∫

Ω
|u|p∗ δ

nβ
n−p

∂Ω

) 1
qα′

.
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5. Results for Hardy–Sobolev inequalities
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Sufficient conditions for HS-inequalities

From the interpolation theorem we obtain corresponding results for
Hardy–Sobolev inequalities for all p ≤ q ≤ p∗.

Theorem (LV. 2015)

Let 1 < p <∞ and β < p − 1, and let Ω ⊂ Rn be an open set. If

dimA(Ωc) < n − p + β or dimA(Ωc) > n − p + β,

then Ω admits a (q, p, β)-Hardy–Sobolev inequality for all p ≤ q ≤ p∗;
(p, β)-Hardy inequality;
in the latter case, if Ω is unbounded, then also Ωc has to be unbounded.

Here the second bound dimA(Ωc) > n − p + β is rather sharp, but
dimA(Ωc) < n− p + β can be weakened when p < q < p∗. Also the upper
bound β < p − 1 can be changed to the weaker assumption that
dimA(Ωc) < n − 1 (thus improving the Hardy-case as well):
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Sufficient conditions revisited

Theorem (LV. 2015)

Let 1 ≤ p ≤ q ≤ np/(n − p) <∞ and β ∈ R. If Ω ⊂ Rn is an open set
and

dimA(Ωc) < min
{q

p (n − p + β) , n − 1
}
,

then Ω admits a (q, p, β)-Hardy–Sobolev inequality.

The requirement dimA(Ωc) < n − 1 can not be omitted (but it can be
replaced with and upper bound for β).

An example is given by Ω = Rn \ ∂B(0, 1): for suitable functions
uk ∈ C∞0 (B(0, 1)) the LHS of the (q, p, β)-HS has a positive lower bound,
while the RHS tends to zero if β > p − 1 = p − n + dimA(Ωc).
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Horiuchi and P(s)-condition

The proof of the previous theorem relies heavily on the work [Horiuchi,
1989], which studied embeddings between weighted Sobolev spaces and
hence the non-homogeneous versions of Hardy–Sobolev inequalities.

In this connection Horiuchi defined that a closed set E ⊂ Rn of zero
measure satisfies condition P(s), for 0 ≤ s ≤ n, if there is C > 0 such that
for all balls B and all numbers η1, η2 satisfying 0 ≤ η1 < η2 ≤ diam(B),

|B ∩ (Eη2 \ Eη1)| ≤

{
Cηs−1

2 (η2 − η1) diam(B)n−s if 1 ≤ s ≤ n

C (η2 − η1)s diam(B)n−s if 0 ≤ s < 1 .

Here Eη = {x ∈ Rn : δE (x) < η}.
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Horiuchi and Assouad

Horiuchi’s P(s)-condition is clearly related to the dimension of E , but
perhaps the following characterization is not completely obvious:

Theorem (LV. 2015)

Let E ⊂ Rn be a closed set with |E | = 0. Then

dimA(E ) = n − sup
{

0 ≤ s ≤ n : E satisfies P(s)
}
.

In particular, the P(s)-property holds for all 0 ≤ s < n − dimA(E ).

Knowing this, we can follow Horiuchi’s original ideas to prove our sufficient
condition for Hardy–Sobolev inequalities.
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Necessary conditions for HS-inequalities

As with Hardy inequalities, there are corresponding necessary conditions
for HS-inequalities as well.

Theorem (LV. 2015)

Assume that 1 ≤ p ≤ q < np/(n − p) <∞ and that Ω ⊂ Rn admits a
(q, p, β)-HS inequality. If β ≥ 0 and q

p (n − p + β) 6= n, then

dimA(Ωc) < q
p (n − p + β) or dimH(Ωc) ≥ n − p + β .

If β < 0 and Ωc is compact and porous ( dimA(Ωc) < n ), then

dimA(Ωc) < q
p (n − p + β) or dimM(Ωc) ≥ n − p + β .

In particular, this shows that the numbers q
p (n − p + β) and n − p + β in

the sufficient conditions are again sharp (although different dimensions in
the lower bounds).
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Necessary conditions for HS-inequalities

There are also local versions of the necessary conditions:

Theorem (LV. 2015)

Assume that 1 ≤ p ≤ q < np/(n − p) <∞ and that Ω ⊂ Rn admits a
(q, p, β)-HS inequality. If β ≥ 0 and q

p (n − p + β) 6= n, then for each ball
B ⊂ Rn either

dimA(Ωc ∩ B) < q
p (n − p + β) or dimH(Ωc ∩ 2B) ≥ n − p + β .

If β < 0 and Ωc is compact and porous ( dimA(Ωc) < n ), then for each
ball B ⊂ Rn either

dimA(Ωc ∩ B) < q
p (n − p + β) or dimM(Ωc ∩ `B) ≥ n − p + β ,

where ` = 8
√

n.
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Unweighted characterization

In the results involving a ‘thin’ complement (corresponding to an upper
bound for dimA(Ωc)), the HS-inequalities actually hold for all
u ∈ C∞0 (Rn), not only for u ∈ C∞0 (Ω) as in the ‘thick’ case. Such
inequalities are called global Hardy–Sobolev inequalities. In particular, we
have the following characterization in the unweighted case β = 0.

Corollary (LV. 2015)

Let E 6= ∅ be a closed set in Rn and let 1 ≤ p ≤ q < np/(n − p) <∞.
Then the global (q, p, 0)-Hardy–Sobolev inequality(∫

Rn

|u|q δ(q/p)(n−p)−n
E dx

)1/q

≤ C

(∫
Rn

|∇u|p dx

)1/p

holds for every u ∈ C∞0 (Rn) if and only if dimA(E ) < q
p (n − p) .
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