Hardy-Sobolev inequalities on general open sets

Juha Lehrbäck

based on a joint work with Antti Vähäkangas

Jyväskylän yliopisto

PPF 2015, Linköping 17.06.2015

Juha Lehrbäck (Jyväskylän yliopisto)

Hardy–Sobolev inequalities

PPF 2015 1 / 24

1. Hardy–Sobolev inequalities

Hardy and Sobolev inequalities

Let $\Omega \subset \mathbb{R}^n$ be an open set, let $1 \leq p < n$, and denote $p^* = np/(n-p)$. Then the Sobolev inequality

$$\left(\int_{\Omega} |u|^{p^*} dx\right)^{1/p^*} \leq C \left(\int_{\Omega} |\nabla u|^p dx\right)^{1/p}$$

holds for all $u \in C_0^{\infty}(\Omega)$.

The (p, β)-Hardy inequality, for $1 \leq p < \infty$ and $\beta \in \mathbb{R}$, reads as

$$\int_{\Omega} |u|^p \, \delta_{\partial\Omega}^{\beta-p} \, dx \leq C \int_{\Omega} |\nabla u|^p \, \delta_{\partial\Omega}^{\beta} \, dx,$$

where $\delta_{\partial\Omega}(x) = \text{dist}(x, \partial\Omega)$. If there is C > 0 such that this holds for all $u \in C_0^{\infty}(\Omega)$, we say that Ω admits a (p, β) -Hardy inequality.

These inequalities are well-known tools in the study of function spaces, e.g. (weighted) Sobolev spaces, and have applications in the theory of PDE's.

Juha Lehrbäck (Jyväskylän yliopisto)

Hardy–Sobolev inequalities

PPF 2015 3 / 24

In this talk, we are interested in the following inequalities forming a natural interpolating scale in between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities.

An open set $\Omega \subsetneq \mathbb{R}^n$ admits a (q, p, β) -Hardy–Sobolev inequality if there is C > 0 such that

$$\left(\int_{\Omega} |u|^q \,\delta_{\partial\Omega}^{(q/p)(n-p+\beta)-n} \,dx\right)^{1/q} \leq C \left(\int_{\Omega} |\nabla u|^p \,\delta_{\partial\Omega}^\beta \,dx\right)^{1/p} \qquad (1)$$

for all $u \in C_0^{\infty}(\Omega)$.

The Sobolev inequality is the case $q = p^* = np/(n-p)$, $\beta = 0$ in (1).

The weighted (p, β) -Hardy inequality is the case q = p in (1).

When $E \subset \mathbb{R}^n$ is an *m*-dimensional subspace, $1 \leq m \leq n-1$, $\Omega = \mathbb{R}^n \setminus E$, and $m < \frac{q}{p}(n-p+\beta)$, the global version of the (q, p, β) -Hardy–Sobolev inequality (for all $f \in C_0^{\infty}(\mathbb{R}^n)$) is due to Maz'ya [M, 1985].

Badiale and Tarantello [BT, 2002] (essentially) rediscovered Maz'ya's result for $\beta = 0$, and applied this to study the properties of the solutions of certain elliptic PDE's related to the dynamics of galaxies.

For m = 0, i.e. $E = \{0\}$, the corresponding Hardy–Sobolev inequality is known as Caffarelli–Kohn–Nirenberg inequality, since this case first appeared in [CKN, 1984]

◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 = のへの

Hardy–Sobolev inequalities can be obtained from the (weighted) Hardy inequality with the help of the (unweighted) Sobolev inequality:

Theorem (LV, 2015)

Assume that $1 \le p < n$ and $\beta \in \mathbb{R}$. If Ω admits a (p, p, β) -Hardy–Sobolev inequality (i.e., a (p, β) -Hardy inequality), then Ω admits (q, p, β) -Hardy–Sobolev inequalities for all exponents $p \le q \le p^*$.

イロト イポト イヨト イヨト 三日

Proof of the interpolation theorem

Step 1: (p, p, β) -HS $\implies (p^*, p, \beta)$ -HS (weighted Sobolev). Let $u \in C_0^{\infty}(\Omega)$ and denote $g = |u| \delta_{\partial\Omega}^{\beta/p} \in \operatorname{Lip}_0(\Omega)$. Then using the Sobolev inequality for g and the (p, p, β) -HS inequality for u we obtain

$$\begin{split} \left(\int_{\Omega} |u|^{p^{*}} \delta_{\partial\Omega}^{\frac{n\beta}{n-p}} \right)^{1/p^{*}} &= \left(\int_{\Omega} |g|^{p^{*}} \right)^{1/p^{*}} \\ \lesssim \left(\int_{\Omega} |\nabla g|^{p} \right)^{1/p} \lesssim \left(\int_{\Omega} |\nabla u|^{p} \delta_{\partial\Omega}^{\beta} \right)^{1/p} + \left(\int_{\Omega} |u|^{p} \delta_{\partial\Omega}^{\beta-p} \right)^{1/p} \\ \lesssim \left(\int_{\Omega} |\nabla u|^{p} \delta_{\partial\Omega}^{\beta} \right)^{1/p} \end{split}$$

Step 2: The (p, p, β) - and (p^*, p, β) -HS inequalities and Hölder's inequality yield (q, p, β) -HS inequalities for all $p \le q \le p^*$:

$$\left(\int_{\Omega} |u|^{q} \,\delta_{\partial\Omega}^{(q/p)(n-p+\beta)-n}\right)^{1/q} \leq \left(\int_{\Omega} |u|^{p} \,\delta_{\partial\Omega}^{\beta-p}\right)^{\frac{1}{q\alpha}} \left(\int_{\Omega} |u|^{p^{*}} \,\delta_{\partial\Omega}^{\frac{n\beta}{n-p}}\right)^{\frac{1}{q\alpha'}}.$$

Juha Lehrbäck (Jyväskylän yliopisto)

2. Assouad dimensions

(日) (四) (三) (三)

Let $E \subset \mathbb{R}^n$. Consider all exponents $\lambda \ge 0$ for which there is $C \ge 1$ such that $E \cap B(w, R)$ can be covered by at most $C(r/R)^{-\lambda}$ balls of radius r for all $0 < r < R < \operatorname{diam}(E)$ and $w \in E$.

The infimum of such exponents λ is the *(upper)* Assouad dimension $\overline{\dim}_A(E)$.

Conversely: consider all $\lambda \ge 0$ for which there is c > 0 such that if 0 < r < R < diam(E), then for every $w \in E$ at least $c(r/R)^{-\lambda}$ balls of radius r are needed to cover $E \cap B(w, R)$.

The supremum of all such λ is the *lower Assouad dimension* $\underline{\dim}_{A}(E)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

(Upper) Assouad dimension was introduced by P. Assouad around 1980 in connection to bi-Lipschitz embedding problem between metric and Euclidean spaces. However, equivalent (or closely related) concepts have appeared under different names, e.g. *(uniform) metric dimension*, some dating back (at least) to [Bouligand 1928]. See [Luukkainen 1998] for a nice account on the basic properties of (upper) Assouad dimension as well as some historical comments.

Lower Assouad dimension has (essentially) appeared under names *lower* dimension, minimal dimensional number, and uniformity dimension. Some basic properties of this are recently established in [Fraser 2014] and [KLV 2013].

イロト 不得 トイヨト イヨト 二日

Minkowski and Assouad

Once again:

 $\overline{\dim}_{A}(E)$ is the infimum of $\lambda \geq 0$ s.t. $E \cap B(w, R)$ can (always) be covered by at most $C(r/R)^{-\lambda}$ balls of radius $0 < r < R < \operatorname{diam}(E)$

 $\underline{\dim}_{A}(E)$ is the supremum of $\lambda \geq 0$ s.t. (always) at least $C(r/R)^{-\lambda}$ balls of radius $0 < r < R < \operatorname{diam}(E)$ are needed to cover $E \cap B(w, R)$

For comparison, recall the *upper and lower Minkowski dimensions* of a compact $E \subset \mathbb{R}^n$:

 $\overline{\dim}_{\mathsf{M}}(E)$ is the infimum of $\lambda \ge 0$ s.t. E can be covered by at most $Cr^{-\lambda}$ balls of radius $0 < r < \operatorname{diam}(E)$

 $\underline{\dim}_{\mathsf{M}}(E)$ is the supremum of $\lambda \ge 0$ s.t. at least $Cr^{-\lambda}$ balls of radius $0 < r < \operatorname{diam}(E)$ are needed to cover E.

Thus $\underline{\dim}_{A}(E) \leq \underline{\dim}_{M}(E) \leq \overline{\dim}_{M}(E) \leq \overline{\dim}_{A}(E).$

Examples (1)

General idea: Assouad dimensions reflect the 'extreme' behavior of sets and take into account all scales 0 < r < d(E).

• If $E = \{0\} \cup [1,2] \subset \mathbb{R}$, then $\underline{\dim}_A(E) = 0$ and $\overline{\dim}_A(E) = 1$ $(\underline{\dim}_M(E) = \overline{\dim}_M(E) = 1)$.

•
$$\underline{\dim}_{A}(\mathbb{Z}) = 0$$
 and $\overline{\dim}_{A}(\mathbb{Z}) = 1$.

• If $E = \{(1/j, 0, \dots, 0) : j \in \mathbb{N}\} \cup \{(0, 0, \dots, 0)\} \subset \mathbb{R}^n$, then then $\underline{\dim}_A(E) = 0$ and $\overline{\dim}_A(E) = 1$ ($\underline{\dim}_M(E) = \overline{\dim}_M(E) = 1/2$).

1

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

Examples (2)

• If $S \subset \mathbb{R}^2$ is an unbounded, locally rectifiable von Koch snowflake -type curve consisting of unit intervals, then $\underline{\dim}_A(S) = 1$ and $\overline{\dim}_A(E) = \log 4/\log 3$ (flat on small scales, fractal on large scales)

• If $S \subset \mathbb{R}^2$ consists of infinitely many copies of the usual (fractal) von Koch snowflake curve, laid side by side, then $\underline{\dim}_A(S) = 1$ and $\overline{\dim}_A(E) = \log 4/\log 3$ (fractal on small scales, flat on large scales).

Examples (2)

• If $S \subset \mathbb{R}^2$ is an unbounded, locally rectifiable von Koch snowflake -type curve consisting of unit intervals, then $\underline{\dim}_A(S) = 1$ and $\overline{\dim}_A(E) = \log 4/\log 3$ (flat on small scales, fractal on large scales)

• If $S \subset \mathbb{R}^2$ consists of infinitely many copies of the usual (fractal) von Koch snowflake curve, laid side by side, then $\underline{\dim}_A(S) = 1$ and $\overline{\dim}_A(E) = \log 4/\log 3$ (fractal on small scales, flat on large scales).

Examples (2)

• If $S \subset \mathbb{R}^2$ is an unbounded, locally rectifiable von Koch snowflake -type curve consisting of unit intervals, then $\underline{\dim}_A(S) = 1$ and $\overline{\dim}_A(E) = \log 4/\log 3$ (flat on small scales, fractal on large scales)

• If $S \subset \mathbb{R}^2$ consists of infinitely many copies of the usual (fractal) von Koch snowflake curve, laid side by side, then $\underline{\dim}_A(S) = 1$ and $\overline{\dim}_A(E) = \log 4/\log 3$ (fractal on small scales, flat on large scales).

Hausdorff and lower Assouad

Recall that the *Hausdorff* (ρ -)content of dimension λ , for $E \subset \mathbb{R}^n$, is

$$\mathcal{H}^{\lambda}_{\varrho}(E) = \inf \bigg\{ \sum_{k} r_{k}^{\lambda} : E \subset \bigcup_{k} B(x_{k}, r_{k}), \ x_{k} \in E, \ 0 < r_{k} \leq \varrho \bigg\}.$$

The λ -Hausdorff measure of E is $\mathcal{H}^{\lambda}(E) = \lim_{\varrho \to 0} \mathcal{H}^{\lambda}_{\varrho}(E)$ and the Hausdorff dimension of E is dim_H(A) = inf{ $\lambda \ge 0 : \mathcal{H}^{\lambda}(A) = 0$ }.

It can be shown that if $E \subset \mathbb{R}^n$ is closed, then $\underline{\dim}_A(E) \leq \underline{\dim}_H(E \cap B)$ for all balls B centered at E. (However, e.g. $\underline{\dim}_A(\mathbb{Q}) = 1$ but $\underline{\dim}_H(\mathbb{Q}) = 0$.)

The proof of this is based on the fact that for each $0 < t < \underline{\dim}_A(E)$

$$\mathcal{H}^t_\inftyig(E\cap B(w,r)ig) \geq cr^t \quad ext{for all } w\in E, \; 0< r< ext{diam}(E).$$

In fact, for closed $E \subset \mathbb{R}^n$ we have $\underline{\dim}_A(E) = \sup\{t \ge 0 : (2) \text{ holds}\}$. This links $\underline{\dim}_A$ to *uniform fatness* and hence to potential theory.

Juha Lehrbäck (Jyväskylän yliopisto)

3. Results

Sufficient conditions

The following sufficient condition holds for the (p, β) -Hardy inequality.

Theorem (L, 2014)

Let $1 and <math>\beta , and let <math>\Omega \subset \mathbb{R}^n$ be an open set. If

 $\overline{\dim}_{\mathsf{A}}(\Omega^{c}) < n - p + \beta \quad \text{ or } \quad \underline{\dim}_{\mathsf{A}}(\Omega^{c}) > n - p + \beta,$

then Ω admits a (p, β) -Hardy inequality; in the latter case, if Ω is unbounded, then also Ω^c has to be unbounded.

The first conditon has been essentially known in \mathbb{R}^n in the case $\beta = 0$ by [Aikawa 1991] and [Koskela–Zhong 2003], and for general β under additional geometric assumptions [L. 2008]. The second condition, for $\beta = 0$, is a reformulation of the well-known sufficient condition using *uniform p-fatness*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

From the interpolation theorem we obtain the corresponding result for Hardy–Sobolev inequalities for all $p \le q \le p^*$.

Theorem (LV, 2015)

Let $1 and <math>\beta , and let <math>\Omega \subset \mathbb{R}^n$ be an open set. If

 $\overline{\dim}_{\mathsf{A}}(\Omega^{\mathsf{c}}) < n - p + \beta \quad \text{ or } \quad \underline{\dim}_{\mathsf{A}}(\Omega^{\mathsf{c}}) > n - p + \beta,$

then Ω admits a (q, p, β) -Hardy–Sobolev inequality for all $p \leq q \leq p^*$; in the latter case, if Ω is unbounded, then also Ω^c has to be unbounded.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Sufficient conditions revisited

In the previous sufficient condition for Hardy–Sobolev inequalities the bound $\underline{\dim}_A(\Omega^c) > n - p + \beta$ is rather sharp, but $\overline{\dim}_A(\Omega^c) < n - p + \beta$ can be weakened when $p < q < p^*$. Also the upper bound $\beta can be changed to the weaker assumption that <math>\overline{\dim}_A(\Omega^c) < n - 1$:

Theorem (LV, 2015)

Let $1 \le p \le q \le np/(n-p) < \infty$ and $\beta \in \mathbb{R}$. If $\Omega \subset \mathbb{R}^n$ is an open set and

$$\overline{\dim}_{\mathsf{A}}(\Omega^{c}) < \min\left\{\frac{q}{p}(n-p+\beta), n-1\right\},\$$

then Ω admits a (q, p, β) -Hardy–Sobolev inequality.

The requirement $\overline{\dim}_A(\Omega^c) < n-1$ can not be omitted. An example is given by $\Omega = \mathbb{R}^n \setminus \partial B(0,1)$: for suitable functions $u_k \in C_0^{\infty}(B(0,1))$ the LHS of the (q, p, β) -HS has a positive lower bound, while the RHS tends to zero if $\beta > p-1 = p-n + \overline{\dim}_A(\Omega^c)$.

The proof of the previous theorem relies heavily on the work of Horiuchi [H, 1989], who studied embeddings between weighted Sobolev spaces and hence the non-homogeneous versions of Hardy–Sobolev inequalities.

In this connection Horiuchi defined that a closed set $E \subset \mathbb{R}^n$ of zero measure satisfies condition P(s), for $0 \le s \le n$, if there is C > 0 such that for all balls B and all numbers η_1, η_2 satisfying $0 \le \eta_1 < \eta_2 \le \text{diam}(B)$,

$$|B \cap (\mathcal{E}_{\eta_2} \setminus \mathcal{E}_{\eta_1})| \leq \begin{cases} C\eta_2^{s-1}(\eta_2 - \eta_1) \operatorname{diam}(B)^{n-s} & \text{if } 1 \leq s \leq n \\ C(\eta_2 - \eta_1)^s \operatorname{diam}(B)^{n-s} & \text{if } 0 \leq s < 1 \,. \end{cases}$$

Here $E_{\eta} = \{x \in \mathbb{R}^n : \delta_E(x) < \eta\}.$

Horiuchi's P(s)-condition is clearly related to the dimension of E, but perhaps the following characterization is not completely obvious:

Theorem (LV, 2015)

Let $E \subset \mathbb{R}^n$ be a closed set with |E| = 0. Then

$$\overline{\dim}_{\mathsf{A}}(E) = n - \sup \{ 0 \le s \le n : E \text{ satisfies } \mathsf{P}(s) \}.$$

In particular, the P(s)-property holds for all $0 \le s < n - \overline{\dim}_A(E)$.

Knowing this, we can follow Horiuchi's original ideas to prove our sufficient condition for Hardy–Sobolev inequalities.

Necessary conditions

Theorem (LV, 2015)

Assume that $1 \le p \le q < np/(n-p) < \infty$ and that $\Omega \subset \mathbb{R}^n$ admits a (q, p, β) -HS inequality. If $\beta \ge 0$ and $\frac{q}{p}(n-p+\beta) \ne n$, then

$$\overline{\dim}_{\mathsf{A}}(\Omega^c) < rac{q}{p}(n-p+\beta) \quad \text{or} \quad \dim_{\mathsf{H}}(\Omega^c) \geq n-p+\beta \,.$$

If $\beta < 0$ and Ω^c is compact and porous ($\overline{\dim}_A(\Omega^c) < n$), then

$$\overline{\dim}_{\mathsf{A}}(\Omega^c) < \frac{q}{p}(n-p+\beta) \quad \text{or} \quad \underline{\dim}_{\mathsf{M}}(\Omega^c) \ge n-p+\beta \,.$$

In particular, the numbers $\frac{q}{p}(n-p+\beta)$ and $n-p+\beta$ in the sufficient conditions are sharp (although different dimensions in the lower bounds).

Such dichotomy holds also locally: for all balls $B \subset \mathbb{R}^n$ either $\overline{\dim}_A(B \cap \Omega^c) < \frac{q}{p}(n-p+\beta)$ or $\dim_H(2B \cap \Omega^c) \ge n-p+\beta$ when $\beta \ge 0$, and respective bounds hold when $\beta < 0$.

Juha Lehrbäck (Jyväskylän yliopisto)

Unweighted characterization

In the results involving a 'thin' complement (corresponding to an upper bound for $\overline{\dim}_A(\Omega^c)$), the HS-inequalities hold actually for all $u \in C_0^{\infty}(\mathbb{R}^n)$, not only for $u \in C_0^{\infty}(\Omega)$ as in the 'thick' case. Such inequalities are called *global* Hardy–Sobolev inequalities. In particular, we have the following characterization in the unweighted case $\beta = 0$.

Corollary (LV, 2015)

Let $E \neq \emptyset$ be a closed set in \mathbb{R}^n and let $1 \leq p \leq q < np/(n-p) < \infty$. Then the global (q, p, 0)-Hardy–Sobolev inequality

$$\left(\int_{\mathbb{R}^n} |u|^q \, \delta_E^{(q/p)(n-p)-n} \, dx\right)^{1/q} \leq C \left(\int_{\mathbb{R}^n} |\nabla u|^p \, dx\right)^{1/p}$$

holds for every $u \in C_0^{\infty}(\mathbb{R}^n)$ if and only if $\overline{\dim}_A(E) < \frac{q}{p}(n-p)$.

イロト 不得 とうせい かほとう ほ

A. KÄENMÄKI, J. LEHRBÄCK AND M. VUORINEN. Dimensions, Whitney covers, and tubular neighborhoods. *Indiana Univ. Math. J.* 62(6):1861–1889, 2013.

J. LEHRBÄCK. Weighted Hardy inequalities and the size of the boundary. *Manuscripta Math.*, 127(2):249–273, 2008.

J. LEHRBÄCK. Hardy inequalities and Assouad dimensions.

J. Anal. Math. (to appear) arXiv:1402.6134

J. LEHRBÄCK AND A. VÄHÄKANGAS. In between the inequalities of Sobolev and Hardy. preprint 2015, arXiv:1502.01190

Some references:

H. AIKAWA. Quasiadditivity of Riesz capacity. Math. Scand. 69(1):15-30, 1991.

P. ASSOUAD. Plongements lipschitziens dans \mathbf{R}^n .

Bull. Soc. Math. France 111(4):429–448, 1983.

M. BADIALE AND G. TARANTELLO. A Sobolev-Hardy inequality

with applications to a nonlinear elliptic equation arising in astrophysics.

Arch. Ration. Mech. Anal., 163(4):259-293, 2002.

G. BOULIGAND. Ensembles impropres et nombre dimensionnel.

Bull. Sci. Math. 52:320-344 and 361-376, 1928.

L. CAFFARELLI, R. KOHN, AND L. NIRENBERG. First order interpolation inequalities with weights. *Compositio Math.*, 53(3):259–275, 1984.

J. FRASER. Assouad type dimensions and homogeneity of fractals. *Trans. Amer. Math. Soc.* 366(12):6687–6733, 2014.

T. HORIUCHI. The imbedding theorems for weighted Sobolev spaces. *J. Math. Kyoto Univ.*, 29(3):365–403, 1989.

P. KOSKELA AND X. ZHONG. Hardy's inequality and the boundary size. *Proc. Amer. Math. Soc.*, 131(4):1151–1158 (electronic), 2003.

J. LUUKKAINEN. Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. *J. Korean Math. Soc.* 35(1):23–76, 1998.

V. G. MAZ'YA. Sobolev spaces. Springer-Verlag, Berlin, 1985.

Juha Lehrbäck (Jyväskylän yliopisto)

Hardy–Sobolev inequalities