
Hardy–Sobolev inequalities on general open sets

Juha Lehrbäck
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Juha Lehrbäck (Jyväskylän yliopisto) Hardy–Sobolev inequalities PPF 2015 1 / 24



1. Hardy–Sobolev inequalities
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Hardy and Sobolev inequalities

Let Ω ⊂ Rn be an open set, let 1 ≤ p < n, and denote p∗ = np/(n − p).
Then the Sobolev inequality(∫

Ω
|u|p∗dx

)1/p∗

≤ C

(∫
Ω
|∇u|p dx

)1/p

holds for all u ∈ C∞0 (Ω).

The (p, β)-Hardy inequality, for 1 ≤ p <∞ and β ∈ R, reads as∫
Ω
|u|p δβ−p

∂Ω dx ≤ C

∫
Ω
|∇u|p δβ∂Ω dx ,

where δ∂Ω(x) = dist(x , ∂Ω). If there is C > 0 such that this holds for all
u ∈ C∞0 (Ω), we say that Ω admits a (p, β)-Hardy inequality.

These inequalities are well-known tools in the study of function spaces, e.g.
(weighted) Sobolev spaces, and have applications in the theory of PDE’s.
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Hardy–Sobolev inequalities

In this talk, we are interested in the following inequalities forming a
natural interpolating scale in between the (weighted) Sobolev inequalities
and the (weighted) Hardy inequalities.

An open set Ω ( Rn admits a (q, p, β)-Hardy–Sobolev inequality
if there is C > 0 such that(∫

Ω
|u|q δ(q/p)(n−p+β)−n

∂Ω dx

)1/q

≤ C

(∫
Ω
|∇u|p δβ∂Ω dx

)1/p

(1)

for all u ∈ C∞0 (Ω).

The Sobolev inequality is the case q = p∗ = np/(n − p), β = 0 in (1).

The weighted (p, β)-Hardy inequality is the case q = p in (1).
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Some history

When E ⊂ Rn is an m-dimensional subspace, 1 ≤ m ≤ n − 1, Ω = Rn \ E ,
and m < q

p (n − p + β), the global version of the (q, p, β)-Hardy–Sobolev
inequality (for all f ∈ C∞0 (Rn)) is due to Maz’ya [M, 1985].

Badiale and Tarantello [BT, 2002] (essentially) rediscovered Maz’ya’s
result for β = 0, and applied this to study the properties of the solutions
of certain elliptic PDE’s related to the dynamics of galaxies.

For m = 0, i.e. E = {0}, the corresponding Hardy–Sobolev inequality is
known as Caffarelli–Kohn–Nirenberg inequality, since this case first
appeared in [CKN, 1984]
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“Interpolation”

Hardy–Sobolev inequalities can be obtained from the (weighted) Hardy
inequality with the help of the (unweighted) Sobolev inequality:

Theorem (LV, 2015)

Assume that 1 ≤ p < n and β ∈ R. If Ω admits a (p, p, β)-Hardy–Sobolev
inequality (i.e., a (p, β)-Hardy inequality), then Ω admits
(q, p, β)-Hardy–Sobolev inequalities for all exponents p ≤ q ≤ p∗.
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Proof of the interpolation theorem

Step 1: (p, p, β)-HS =⇒ (p∗, p, β)-HS (weighted Sobolev).

Let u ∈ C∞0 (Ω) and denote g = |u|δβ/p∂Ω ∈ Lip0(Ω). Then using the
Sobolev inequality for g and the (p, p, β)-HS inequality for u we obtain(∫

Ω
|u|p∗δ

nβ
n−p

∂Ω

)1/p∗

=

(∫
Ω
|g |p∗

)1/p∗

.

(∫
Ω
|∇g |p

)1/p

.

(∫
Ω
|∇u|pδβ∂Ω

)1/p

+

(∫
Ω
|u|pδβ−p

∂Ω

)1/p

.

(∫
Ω
|∇u|pδβ∂Ω

)1/p

Step 2: The (p, p, β)- and (p∗, p, β)-HS inequalities and Hölder’s
inequality yield (q, p, β)-HS inequalities for all p ≤ q ≤ p∗ :(∫

Ω
|u|q δ(q/p)(n−p+β)−n

∂Ω

)1/q

≤
(∫

Ω
|u|p δβ−p

∂Ω

) 1
qα
(∫

Ω
|u|p∗ δ

nβ
n−p

∂Ω

) 1
qα′

.
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2. Assouad dimensions
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Assouad dimensions

Let E ⊂ Rn. Consider all exponents λ ≥ 0 for which there is C ≥ 1 such
that E ∩ B(w ,R) can be covered by at most C (r/R)−λ balls of radius r
for all 0 < r < R < diam(E ) and w ∈ E .

The infimum of such exponents λ is the (upper) Assouad dimension
dimA(E ).

Conversely: consider all λ ≥ 0 for which there is c > 0 such that if
0 < r < R < diam(E ), then for every w ∈ E at least c(r/R)−λ balls of
radius r are needed to cover E ∩ B(w ,R).

The supremum of all such λ is the lower Assouad dimension dimA(E ).
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Some comments on Assouad dimensions

(Upper) Assouad dimension was introduced by P. Assouad around 1980 in
connection to bi-Lipschitz embedding problem between metric and
Euclidean spaces. However, equivalent (or closely related) concepts have
appeared under different names, e.g. (uniform) metric dimension, some
dating back (at least) to [Bouligand 1928]. See [Luukkainen 1998] for a
nice account on the basic properties of (upper) Assouad dimension as well
as some historical comments.

Lower Assouad dimension has (essentially) appeared under names lower
dimension, minimal dimensional number, and uniformity dimension. Some
basic properties of this are recently established in [Fraser 2014] and [KLV
2013].
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Minkowski and Assouad

Once again:
dimA(E ) is the infimum of λ ≥ 0 s.t. E ∩B(w ,R) can (always) be covered
by at most C (r/R)−λ balls of radius 0 < r < R < diam(E )

dimA(E ) is the supremum of λ ≥ 0 s.t. (always) at least C (r/R)−λ balls
of radius 0 < r < R < diam(E ) are needed to cover E ∩ B(w ,R)

For comparison, recall the upper and lower Minkowski dimensions of a
compact E ⊂ Rn:

dimM(E ) is the infimum of λ ≥ 0 s.t. E can be covered
by at most Cr−λ balls of radius 0 < r < diam(E )

dimM(E ) is the supremum of λ ≥ 0 s.t. at least Cr−λ balls
of radius 0 < r < diam(E ) are needed to cover E .

Thus dimA(E ) ≤ dimM(E ) ≤ dimM(E ) ≤ dimA(E ).
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Examples (1)

General idea: Assouad dimensions reflect the ‘extreme’ behavior of sets
and take into account all scales 0 < r < d(E ).

If E = {0} ∪ [1, 2] ⊂ R, then dimA(E ) = 0 and dimA(E ) = 1
(dimM(E ) = dimM(E ) = 1).

dimA(Z) = 0 and dimA(Z) = 1.

If E = {(1/j , 0, . . . , 0) : j ∈ N} ∪ {(0, 0, . . . , 0)} ⊂ Rn, then then
dimA(E ) = 0 and dimA(E ) = 1 (dimM(E ) = dimM(E ) = 1/2).

0 1/4 1/3 1/2 1
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Examples (2)

If S ⊂ R2 is an unbounded, locally rectifiable von Koch snowflake
-type curve consisting of unit intervals, then dimA(S) = 1 and
dimA(E ) = log 4/ log 3 (flat on small scales, fractal on large scales)

If S ⊂ R2 consists of infinitely many copies of the usual (fractal) von
Koch snowflake curve, laid side by side, then dimA(S) = 1 and
dimA(E ) = log 4/ log 3 (fractal on small scales, flat on large scales).
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Juha Lehrbäck (Jyväskylän yliopisto) Hardy–Sobolev inequalities PPF 2015 13 / 24



Hausdorff and lower Assouad

Recall that the Hausdorff (%-)content of dimension λ, for E ⊂ Rn, is

Hλ%(E ) = inf

{∑
k

rλk : E ⊂
⋃
k

B(xk , rk), xk ∈ E , 0 < rk ≤ %
}
.

The λ-Hausdorff measure of E is Hλ(E ) = lim%→0Hλ%(E ) and the

Hausdorff dimension of E is dimH(A) = inf{λ ≥ 0 : Hλ(A) = 0}.

It can be shown that if E ⊂ Rn is closed, then dimA(E ) ≤ dimH(E ∩B) for
all balls B centered at E . (However, e.g. dimA(Q) = 1 but dimH(Q) = 0.)

The proof of this is based on the fact that for each 0 < t < dimA(E )

Ht
∞
(
E ∩ B(w , r)

)
≥ cr t for all w ∈ E , 0 < r < diam(E ). (2)

In fact, for closed E ⊂ Rn we have dimA(E ) = sup{t ≥ 0 : (2) holds}.
This links dimA to uniform fatness and hence to potential theory.
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3. Results
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Sufficient conditions

The following sufficient condition holds for the (p, β)-Hardy inequality.

Theorem (L, 2014)

Let 1 < p <∞ and β < p − 1, and let Ω ⊂ Rn be an open set. If

dimA(Ωc) < n − p + β or dimA(Ωc) > n − p + β,

then Ω admits a (p, β)-Hardy inequality;
in the latter case, if Ω is unbounded, then also Ωc has to be unbounded.

The first conditon has been essentially known in Rn in the case β = 0 by
[Aikawa 1991] and [Koskela–Zhong 2003], and for general β under
additional geometric assumptions [L. 2008].
The second condition, for β = 0, is a reformulation of the well-known
sufficient condition using uniform p-fatness.
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Sufficient conditions

From the interpolation theorem we obtain the corresponding result for
Hardy–Sobolev inequalities for all p ≤ q ≤ p∗.

Theorem (LV, 2015)

Let 1 < p <∞ and β < p − 1, and let Ω ⊂ Rn be an open set. If

dimA(Ωc) < n − p + β or dimA(Ωc) > n − p + β,

then Ω admits a (q, p, β)-Hardy–Sobolev inequality for all p ≤ q ≤ p∗;
in the latter case, if Ω is unbounded, then also Ωc has to be unbounded.
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Sufficient conditions revisited

In the previous sufficient condition for Hardy–Sobolev inequalities the
bound dimA(Ωc) > n − p + β is rather sharp, but dimA(Ωc) < n − p + β
can be weakened when p < q < p∗. Also the upper bound β < p − 1 can
be changed to the weaker assumption that dimA(Ωc) < n − 1 :

Theorem (LV, 2015)

Let 1 ≤ p ≤ q ≤ np/(n − p) <∞ and β ∈ R. If Ω ⊂ Rn is an open set
and

dimA(Ωc) < min
{q

p (n − p + β) , n − 1
}
,

then Ω admits a (q, p, β)-Hardy–Sobolev inequality.

The requirement dimA(Ωc) < n − 1 can not be omitted. An example is
given by Ω = Rn \ ∂B(0, 1): for suitable functions uk ∈ C∞0 (B(0, 1)) the
LHS of the (q, p, β)-HS has a positive lower bound, while the RHS tends
to zero if β > p − 1 = p − n + dimA(Ωc).

Juha Lehrbäck (Jyväskylän yliopisto) Hardy–Sobolev inequalities PPF 2015 18 / 24



Horiuchi and P(s)-condition

The proof of the previous theorem relies heavily on the work of Horiuchi
[H, 1989], who studied embeddings between weighted Sobolev spaces and
hence the non-homogeneous versions of Hardy–Sobolev inequalities.

In this connection Horiuchi defined that a closed set E ⊂ Rn of zero
measure satisfies condition P(s), for 0 ≤ s ≤ n, if there is C > 0 such that
for all balls B and all numbers η1, η2 satisfying 0 ≤ η1 < η2 ≤ diam(B),

|B ∩ (Eη2 \ Eη1)| ≤

{
Cηs−1

2 (η2 − η1) diam(B)n−s if 1 ≤ s ≤ n

C (η2 − η1)s diam(B)n−s if 0 ≤ s < 1 .

Here Eη = {x ∈ Rn : δE (x) < η}.

Juha Lehrbäck (Jyväskylän yliopisto) Hardy–Sobolev inequalities PPF 2015 19 / 24



Horiuchi and Assouad

Horiuchi’s P(s)-condition is clearly related to the dimension of E , but
perhaps the following characterization is not completely obvious:

Theorem (LV, 2015)

Let E ⊂ Rn be a closed set with |E | = 0. Then

dimA(E ) = n − sup
{

0 ≤ s ≤ n : E satisfies P(s)
}
.

In particular, the P(s)-property holds for all 0 ≤ s < n − dimA(E ).

Knowing this, we can follow Horiuchi’s original ideas to prove our sufficient
condition for Hardy–Sobolev inequalities.
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Necessary conditions

Theorem (LV, 2015)

Assume that 1 ≤ p ≤ q < np/(n − p) <∞ and that Ω ⊂ Rn admits a
(q, p, β)-HS inequality. If β ≥ 0 and q

p (n − p + β) 6= n, then

dimA(Ωc) < q
p (n − p + β) or dimH(Ωc) ≥ n − p + β .

If β < 0 and Ωc is compact and porous ( dimA(Ωc) < n ), then

dimA(Ωc) < q
p (n − p + β) or dimM(Ωc) ≥ n − p + β .

In particular, the numbers q
p (n − p + β) and n − p + β in the sufficient

conditions are sharp (although different dimensions in the lower bounds).

Such dichotomy holds also locally: for all balls B ⊂ Rn either
dimA(B ∩ Ωc) < q

p (n − p + β) or dimH(2B ∩ Ωc) ≥ n − p + β when
β ≥ 0, and respective bounds hold when β < 0.
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Unweighted characterization

In the results involving a ‘thin’ complement (corresponding to an upper
bound for dimA(Ωc)), the HS-inequalities hold actually for all
u ∈ C∞0 (Rn), not only for u ∈ C∞0 (Ω) as in the ‘thick’ case. Such
inequalities are called global Hardy–Sobolev inequalities. In particular, we
have the following characterization in the unweighted case β = 0.

Corollary (LV, 2015)

Let E 6= ∅ be a closed set in Rn and let 1 ≤ p ≤ q < np/(n − p) <∞.
Then the global (q, p, 0)-Hardy–Sobolev inequality(∫

Rn

|u|q δ(q/p)(n−p)−n
E dx

)1/q

≤ C

(∫
Rn

|∇u|p dx

)1/p

holds for every u ∈ C∞0 (Rn) if and only if dimA(E ) < q
p (n − p) .
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