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Abstract. We give a new proof for the self-improvement of uniform p-fatness in the setting
of general metric spaces. Our proof is based on rather standard methods of geometric
analysis, and in particular the proof avoids the use of deep results from potential theory
and analysis on metric spaces that have been indispensable in the previous proofs of the
self-improvement. A key ingredient in the proof is a self-improvement property for local
Hardy inequalities.

1. Introduction

Self-improvement is among the most profound and beautiful phenomena in mathematical
analysis, and a source of important tools in the proofs of several deep and perhaps even
surprising results. Important examples of concepts enjoying self-improvement include re-
verse Hölder inequalities, Muckenhoupt’s Ap classes of weights, Poincaré inequalities, and
the main topics of this paper: Hardy inequalities and uniform p-fatness related to the vari-
ational p-capacity.

That a uniformly p-fat set E, for 1 < p < ∞, is actually uniformly q-fat for some
1 ≤ q < p as well, was first proven by Lewis [14] in the Euclidean case E ⊂ Rn. In fact,
Lewis studied more general (α, p)-fatness conditions related to Riesz capacities, but when
α = 1 his setting is equivalent to that of the variational p-capacity. Another proof for the self-
improvement of uniform p-fatness in (weighted) Rn was given by Mikkonen [18], and in [2]
Björn, MacManus and Shanmugalingam generalized the self-improvement to more general
metric spaces, essentially proving the following theorem (although in [2] the assumptions on
the space X were slightly stronger).

Theorem 1.1. Let 1 < p <∞ and let X be a complete metric measure space equipped with
a doubling measure µ and supporting a (1, p)-Poincaré inequality. Assume that E ⊂ X is a
uniformly p-fat closed set. Then there exists 1 < q < p such that E is also uniformly q-fat
(quantitatively).

The proofs of the versions of Theorem 1.1 in [2, 14, 18] utilize deep results from linear
and non-linear potential theory, and moreover the proof in [2] is based on the impressive
theory of differential structures on metric spaces, established by Cheeger in [4].

In this paper, we use a different approach and establish a new proof for Theorem 1.1
with the help of local Hardy inequalities and their self-improvement properties. Our proof
is completely new also in Rn, where all previously known proofs have been based on the
ideas either in [14] or in [18]. In addition, it turns out that with our approach it is possible
to obtain the following generalization of Theorem 1.1 to a non-complete space X, where
Cheeger’s theory is not available.

Theorem 1.2. Let 1 < p0 < p < ∞ and let X be a metric measure space equipped with
a doubling measure µ and supporting a (p, p0)-Poincaré inequality. Assume that E ⊂ X is

a uniformly p-fat closed set and that E ∩ B(w, r) is compact for all w ∈ E and all r > 0.
Then there exists p0 < q < p such that E is also uniformly q-fat (quantitatively).
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We will also formulate a slightly stronger version of Theorem 1.2 later in Theorem 4.1.
Recall that if X is as in Theorem 1.1 (i.e., complete, equipped with a doubling measure
and supporting a (1, p)-Poincaré inequality), then a (p, p0)-Poincaré inequality as in The-
orem 1.2 follows from the well-known self-improvement properties of Poincaré inequalities;
see Section 2.3 for more discussion.

It should perhaps be noted here that we define the variational p-capacity using Lipschitz
test functions (the precise definition is given in Section 2.4). If X is complete, this definition
agrees with the definition using Newtonian (or Sobolev) test functions, but in a non-complete
space the resulting capacities can be different.

Let us turn to an outline of the ideas behind the proofs of Theorems 1.1 and 1.2. In [11]
(see also [10, Theorem 3.3]) it was shown (essentially) that if X is as in Theorem 1.1, then
a closed set E ⊂ X is uniformly p-fat if and only if there is C > 0 such that the boundary
p-Poincaré inequality ∫

B(w,r)

|u|p dµ ≤ Crp
∫
B(w,τr)

gp dµ (1)

holds for all w ∈ E and all r > 0, whenever u is a Lipschitz function in X such that
u = 0 in E and g is a (p-weak) upper gradient of u (in Rn one can always take g = |∇u|).
Hence to obtain the self-improvement of uniform p-fatness, it would suffice to prove the
self-improvement directly to inequality (1); this was actually mentioned in [11, p. 718] as a
possible and interesting approach to self-improvement.

We will not give a direct proof for the self-improvement of (1), but we show in Theorem 3.1
that if X is as in Theorem 1.2 (in particular not necessarily complete) and E ⊂ X is
uniformly p-fat, then there exist ε > 0 and C > 0 such that the following (p − ε)-version
of (1) holds for all w ∈ E and all r > 0, whenever u is a Lipschitz function in X such that
u = 0 in E: ∫

B(w,r)

|u|p−ε dµ ≤ Crp−ε
∫
B(w,τr)

Lip(u, ·)p−ε dµ . (2)

Here Lip(u, x) is the upper pointwise Lipschitz constant of u at x ∈ X. We remark that in
Rn inequality (2) can be obtained directly with |∇u| instead of Lip(u, ·) on the right-hand
side. More generally, if the space X is complete, then Lip(u, ·) is actually known to be
a minimal weak upper gradient of u by the results of Cheeger [4]. Hence we can connect
from inequality (2) back to uniform fatness, and now indeed to the better (p − ε)-uniform
fatness, thus proving Theorem 1.1. In [11] this connection was established with the help
of the so-called pointwise Hardy inequalities, but, for the sake of completeness, we show
in Section 3 how Theorem 1.1 follows directly from the validity of (2). In particular, this
way we avoid the use of pointwise Hardy inequalities in our proofs of Theorems 1.1 and 1.2,
although it should be noted that our general approach has been partially suggested and
motivated by these pointwise inequalities.

In a non-complete space X the validity of (2) does not immediately yield the uniform
(p − ε)-fatness of E. Nevertheless, using as an additional tool the connection between
uniform fatness and density conditions for suitable Hausdorff contents, we show in Section 4
how the improved boundary Poincaré inequality (2) can be used to prove also Theorem 1.2.

It is the proof of (2) (assuming uniform p-fatness) that constitutes the main challenge in
our proofs of Theorems 1.1 and 1.2. In fact, we will establish (2) via a self-improvement
property of suitable local Hardy inequalities. Recall that one of the consequences of the
self-improvement of uniform fatness, noted in each of [2, 14, 18], is the validity of a p-
Hardy inequality in the complement of a uniformly p-fat set E ⊂ X. However, using
a method originating from Wannebo [19] (see also [11, Section 5]), it is also possible to
prove such a p-Hardy inequality without using the self-improvement of uniform fatness. We
use an adaptation of this latter method together with a novel ‘local absorbtion argument’
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(Lemma 5.3), and prove in the end of Section 5.2 the following local p-Hardy inequality
when E ⊂ X is uniformly p-fat.

Theorem 1.3. Let 1 < p <∞ and let X be a metric measure space equipped with a doubling
measure µ and supporting a (1, p)-Poincaré inequality. Assume that E ⊂ X is a uniformly
p-fat closed set. Then there exists a constant C > 0 such that the local p-Hardy inequality∫

B\E

(
|u|
dE

)p
dµ ≤ C

∫
32τ2B

gp dµ (3)

holds whenever u is a Lipschitz function in X such that u = 0 in E, g is a p-weak upper
gradient of u, and B = B(w, r) is a ball with w ∈ E and 0 < r < (1/32) diam(X).

Above we have abbreviated dE(x) = dist(x,E). Notice in particular that we do not need
to assume in Theorem 1.3 that the space X is complete.

The next step towards (2) is a self-improvement property for local p-Hardy inequalities (3).
Here we need the assumption that X supports a (p, p0)-Poincaré inequality for some 1 <
p0 < p (actually, it suffices to assume that X supports (q, q)-Poincaré inequalities for all
p0 ≤ q ≤ p, with uniform constants). In this case there exists ε > 0 such that a version of
inequality (3) holds with the exponent p− ε, but now with the p-weak upper gradient g on
the right-hand side of (3) replaced with the upper pointwise Lipschitz constant Lip(u, ·); see
Proposition 5.7. The proof of this self-improvement for local Hardy inequalities is based on
ideas used by Koskela and Zhong [13] in connection with the self-improvement of usual p-
Hardy inequalities; the ideas in [13] were, in turn, inspired by the work of Lewis [15]. Again
the absorbtion Lemma 5.3 is needed to obtain the local inequalities. The (p− ε)-version of
the local Hardy inequality now easily yields the (p − ε)-version of the boundary Poincaré
inequality (2), see Section 3, concluding the proofs of Theorems 1.1 and 1.2.

Admittedly, the proofs that were outlined above are somewhat lengthy and in many places
still quite technical and delicate in the level of details, but one could argue that our general
approach is nevertheless based on rather ‘elementary’ (or ‘standard’) tools. In particular,
we do not need any sophisticated prerequisites concerning potential theory and we can
also avoid completely the use of Cheeger’s deep theory—or, if this theory is used to give
a more direct proof to Theorem 1.1, the use is very explicit and localized; cf. the proof of
Theorem 1.1 at the end of Section 3. In this sense we believe that our proof of Theorem 1.1
is more transparent (also in Rn) than its predecessors and thus hopefully easier to adapt
to further problems, for instance in connection with weighted capacities or capacities of
fractional order smoothness.

2. Preliminaries

2.1. Metric spaces. We assume throughout the paper that X = (X, d, µ) is a metric
measure space equipped with a metric d and a positive complete Borel measure µ such that
0 < µ(B(x, r)) < ∞ for all balls B = B(x, r) = {y ∈ X : d(y, x) < r}. As in [1, p. 2], we
extend µ as a Borel regular (outer) measure on X. In particular, the space X is separable.
Let us emphasize that we do not, in general, require X to be complete. If completeness is
needed somewhere in the paper, we will mention this explicitly.

We also assume that the measure µ is doubling, meaning that there is a constant CD ≥ 1,
called the doubling constant of µ, such that

µ(2B) ≤ CD µ(B) (4)

for all balls B = B(x, r) of X. Here we use for 0 < t < ∞ the notation tB = B(x, tr).
When A ⊂ X, we let A denote the closure of A, and hence B always refers to the closure of
the ball B, not to the corresponding closed ball.

Let A ⊂ X. A function u : A→ R is said to be (L-)Lipschitz, for 0 ≤ L <∞, if

|u(x)− u(y)| ≤ Ld(x, y) for all x, y ∈ A .
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If u : A→ R is an L-Lipschitz function, then the classical McShane extension

ũ(x) = inf
y∈A
{u(y) + Ld(x, y)} , x ∈ X , (5)

defines an L-Lipschitz function ũ : X → R which satisfies ũ|A = u. The set of all Lipschitz
functions u : A→ R is denoted by Lip(A), and

Lip0(A) = {u ∈ Lip(X) : u = 0 in X \ A} .

2.2. (Weak) upper gradients. By a curve we mean a nonconstant, rectifiable, continuous
mapping from a compact interval to X. We say that a Borel function g ≥ 0 on X is an upper
gradient of an extended real-valued function u on X, if for all curves γ joining arbitrary
points x and y in X we have

|u(x)− u(y)| ≤
∫
γ

g ds , (6)

whenever both u(x) and u(y) are finite, and
∫
γ
g ds = ∞ otherwise. In addition, when

1 ≤ p < ∞, a measurable function g ≥ 0 on X is a p-weak upper gradient of an extended
real-valued function u onX if inequality (6) holds for p-almost every curve γ joining arbitrary
points x and y in X; that is, there exists a non-negative Borel function ρ ∈ Lp(X) such that∫
γ
ρ ds =∞ whenever (6) does not hold for the curve γ. We refer to [1] for more information

on p-weak upper gradients.
When u is a (locally) Lipschitz function on X, the upper pointwise Lipschitz constant of

u at x ∈ X is defined as

Lip(u, x) = lim sup
r→0

sup
y∈B(x,r)

|u(y)− u(x)|
r

. (7)

The Borel function Lip(u, ·) is an upper gradient of u; cf. [1, Proposition 1.14]. Moreover, if
X is complete and 1 < p < ∞, then Lip(u, ·) is actually a so-called minimal p-weak upper
gradient of u (in particular, this implies that Lip(u, ·) ≤ g a.e. whenever g ∈ Lp(X) is a
p-weak upper gradient of u). This is a deep result of Cheeger, we refer to [4, Theorem 6.1]
and [1, p. 342].

2.3. Poincaré inequalities. We say that the space X supports a (q, p)-Poincaré inequality,
for 1 ≤ q, p < ∞, if there exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X,
all measurable functions u on X, and for all p-weak upper gradients g of u,(∫

B

|u− uB|q dµ
)p/q

≤ C diam(B)p
∫
λB

gp dµ . (8)

Here

uB =

∫
B

u dµ =
1

µ(B)

∫
B

u dµ

is the integral average of u over the ball B, and the left-hand side of (8) is interpreted as∞
whenever uB is not defined. We remark that X supports a (q, p)-Poincaré inequality with
constants C > 0 and λ ≥ 1 if, and only if, inequality (8) holds for all balls B ⊂ X, all
functions u ∈ L1(X), and all upper gradients g of u; see [4, Proposition 4.13].

If 1 < p <∞ and X supports a (1, p)-Poincaré inequality (and the measure µ is doubling,
as we assume throughout the paper), then X supports also a (p, p)-Poincaré inequality; see
[1, Corollary 4.24]. If in addition X is complete, then there is an exponent 1 < p0 < p
such that X supports a (p, p0)-Poincaré inequality and, consequently, also (q, q)-Poincaré
inequalities with uniform constants whenever p0 ≤ q ≤ p; for details we refer to [8] (see also
[1, Theorem 4.30]) and to [1, Theorem 4.21]. Therefore the following (PI) condition, for a
complete space X supporting a (1, p)-Poincaré inequality, is valid with the above exponents
1 < p0 < p.
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However, since we do not in general assume that X is complete, we use in many of our
results the following a priori assumption concerning the validity of (improved) Poincaré
inequalities with uniform constants:

(PI) Let 1 < p < ∞ be given. We assume that there are 1 < p0 < p, CP > 0 and τ ≥ 1
such that X supports the (q, q)-Poincaré inequality∫

B

|u− uB|q dµ ≤ CP diam(B)q
∫
τB

gq dµ (9)

for every p0 ≤ q ≤ p.

For simplicity, we will in the sequel use Poincaré inequalities with the constants CP > 0
and τ ≥ 1. Indeed, if only a (1, p)-Poincaré inequality is assumed, this is just a matter of
notation (in this case we may use both (1, p)-Poincaré and (p, p)-Poincaré inequality with
the above constants). And if (PI) is assumed, the (1, q)-Poincaré inequalities (with CP > 0
and τ ≥ 1) for p0 ≤ q ≤ p are all trivial consequences of (9) and Hölder’s inequality.

2.4. Capacity and fatness. Let Ω ⊂ X be a bounded open set and let K ⊂ Ω be a closed
set. We define the (Lipschitz) variational p-capacity of K with respect to Ω to be

capp(K,Ω) = inf

∫
Ω

gp dµ , (10)

where the infimum is taken over all functions u ∈ Lip0(Ω), such that u ≥ 1 in K, and all
p-weak upper gradients g of u. If there are no such functions u, we set capp(K,Ω) =∞.

Remark 2.1. If capp(K,Ω) <∞, then the infimum in (10) can be restricted to u ∈ Lip0(Ω)
satisfying χK ≤ u ≤ 1 and to p-weak upper gradients g of u such that g = gχΩ ∈ Lp(X).
Indeed, if u is an admissible test function for capp(K,Ω) and g is a p-weak upper gradient of
u such that g ∈ Lp(Ω), then ũ = max{0,min{1, u}} belongs to Lip0(Ω) and χK ≤ ũ ≤ 1 on
X. Moreover, the function g is clearly a p-weak upper gradient of ũ. By the glueing lemma
[1, Lemma 2.19], we may further assume that g = 0 outside Ω. (Actually, since g need not
belong to Lp(X) but this is needed in the glueing lemma, we first define a function

g̃ = gχΩ + Lip(ũ, ·)χX\Ω ∈ Lp(X)

that is a p-weak upper gradient of ũ, cf. the proof of [1, Theorem 2.6]. Now the glueing
lemma applies, with g̃, showing that gχΩ is a p-weak upper gradient of ũ.)

Let us remark here that if the metric space X is complete and supports a (1, p)-Poincaré
inequality, then the above definition of capp(K,Ω) is equivalent to the definition where the

function u is assumed to belong to the Newtonian space N1,p
0 (Ω). However, we will not use

the theory of Newtonian spaces in this paper, but rather refer to [1] for an introduction
and basic properties of Newtonian functions. In particular, see [1, Theorem 6.19(x)] for the
above-mentioned equivalence of capacities in the complete case.

On the other hand, if X = Rn, equipped with the Euclidean metric and the Lebesgue
measure (or more generally a p-admissible weight, see [6, 18]), then by standard approxi-
mation

capp(K,Ω) = inf

{∫
Ω

|∇u|p dx : u ∈ C∞0 (Ω), u ≥ 1 in K

}
(11)

for all closed (compact) K ⊂ Ω, and therefore capp(K,Ω) is the usual variational p-capacity
of K. In this case all our results (and computations) concerning Lipschitz functions and
their p-weak upper gradients (or upper pointwise Lipschitz constants) can be restated using
functions in C∞0 (Ω) and the norms of their gradients. We recall that our approach is new
even in this special case.



6 J. LEHRBÄCK, H.TUOMINEN, AND A.V.VÄHÄKANGAS

We say that a closed set E ⊂ X is uniformly p-fat, for 1 ≤ p < ∞, if there exists a
constant 0 < c0 ≤ 1 such that

capp(E ∩B(x, r), B(x, 2r)) ≥ c0 capp(B(x, r), B(x, 2r)) (12)

for all x ∈ E and all 0 < r < (1/8) diam(X). If there exists a constant r0 > 0 such that
condition (12) holds for all x ∈ E and all 0 < r < r0, the closed set E is said to be locally
uniformly p-fat.

Remark 2.2. Both Theorem 1.1 and Theorem 1.2 are formulated in terms of uniform
fatness. However, the corresponding results are valid also when ‘uniform fatness’ is replaced
by ‘local uniform fatness’ (in the assumptions with exponent p and in the conclusions with
exponent q). In the sequel, we will exclusively focus on the case of uniformly fat sets. The
minor modifications (required throughout the paper) in the local case are straightforward.

The self-improvement of uniform p-fatness (that is formulated, e.g., in Theorem 1.1) is
critical in various applications; examples beyond the scope of Hardy inequalities include
global higher integrability of both the gradients of solutions to PDE’s [9, 18] and the upper
gradients of certain quasiminimizers in metric measure spaces [16]. In [12] a quite simple
proof for the self-improvement of uniform Q-fatness is provided in the setting of Ahlfors
Q-regular metric measure spaces.

In the Euclidean space Rn, the self-improvement property is known to hold also for more
general (α, p)-fatness conditions related to Riesz capacities by the results of Lewis [14]. For
α = 1 these conditions are equivalent to the uniform p-fatness; cf. [9, p. 902].

In the rest of this paper (and hence in particular in our proof of the self-improvement
of uniform fatness), we only need the following two basic facts concerning the variational
p-capacity, which hold under the assumption that the space X supports a (1, p)-Poincaré
inequality (and hence also a (p, p)-Poincaré inequality). First, there is a constant C > 0
such that, for each Lipschitz function u on X, all p-weak upper gradients g of u, and for all
balls B ⊂ X, we have∫

B

|u|p dµ ≤ C

capp(2
−1B ∩ {u = 0}, B}

∫
τB

gp dµ . (13)

Here {u = 0} = {x ∈ X : u(x) = 0} and τ is the dilatation from the (p, p)-Poincaré
inequality (9). This ‘capacitary Poincaré inequality’ is in the classical Euclidean case due
to Maz’ya [17, Ch. 10]. For the metric space version, cf. [1, Proposition 6.21].

The second fact is a comparison between p-capacity and measure. Namely, there is a
constant C > 0 such that for all balls B = B(x, r) with 0 < r < (1/8) diam(X) and for each
closed set E ⊂ B,

µ(E)

C rp
≤ capp(E, 2B) ≤ CD µ(B)

rp
; (14)

see, for instance [1, Proposition 6.16]. The (1, p)-Poincaré inequality is needed to ensure the
validity of the lower bound in inequality (14).

2.5. Tracking constants. Our results are based on quantitative estimates and absorption
arguments, where it is often crucial to track the dependencies of constants quantitatively.
For this purpose, we will use the following notational convention:

• CX,∗,··· ,∗ denotes a positive constant which quantitatively depends on the quantities
indicated by the ∗’s and (possibly) on: the doubling constant CD of the measure
µ in (4), the constants CP and τ appearing in the (q, q)-Poincaré inequalities (9)
and the constants appearing in the capacitary Poincaré inequality (13) and the
comparison inequality (14).

Observe that CX,∗,··· ,∗ can implicitly depend on p via the estimates in inequalities (9), (13)
and (14). However, any further dependencies on the exponent p will be explicitly indicated.
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3. Improved boundary Poincaré inequalities

Recall, for the rest of the paper, that we assume X to be a metric space (not necessarily
complete) equipped with a doubling measure µ. Further assumptions, concerning e.g. the
validity of Poincaré inequalities, will be stated separately in each of the following results.

Our proof of the self-improvement of uniform fatness is based on the following improved
boundary Poincaré inequalities.

Theorem 3.1. Let 1 < p < ∞ and suppose that X supports the improved (q, q)-Poincaré
inequalities (PI) for p0 ≤ q ≤ p. Assume that E ⊂ X is a uniformly p-fat closed set. Then
there exists constants 0 < ε < p− p0 and C > 0, quantitatively, such that inequality∫

B(w,ρ)

|u|p−ε dµ ≤ Cρp−ε
∫
B(w,τρ)

Lip(u, ·)p−ε dµ

holds whenever w ∈ E, ρ > 0, and u ∈ Lip0(X \ E).

Proof. Fix w ∈ E, a radius ρ > 0, and a function u ∈ Lip0(X \E). Clearly, we may assume
that ρ < (3/2) diam(X). It is convenient to write r = ρ/(12τ 2) and B = B(w, r). Let us
assume, for the time being, that 0 < ε < p− p0 is given and EB ⊂ E ∩ B is any closed set
such that w ∈ EB. Since∫

B(w,ρ)

|u(x)|p−ε

ρp−ε
dµ(x) ≤

∫
B(w,ρ)\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x) ,

it suffices to find quantitative constants 0 < ε < p−p0 and C > 0 (and a closed set EB ⊂ E
as above) such that∫

B(w,ρ)\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x) ≤ C

∫
B(w,τρ)

Lip(u, x)p−ε dµ(x) . (15)

We establish this improved local Hardy inequality below in Proposition 5.7, and this proves
the theorem. Let us remark here that the proof of Proposition 5.7 is rather involved and
divided in Section 5 to the following three stages: ‘Truncation’ in §5.1, ‘Local Hardy’ in §5.2,
and ‘Improvement’ in §5.3. �

From Theorem 3.1 (that is based on postponed Proposition 5.7) we obtain the following
estimate for the capacity test-functions related to capp(E ∩ B, 2B). This estimate will be
used in various settings to prove the self-improvement of uniform fatness.

Proposition 3.2. Let 1 < p <∞ and suppose that X supports the improved (q, q)-Poincaré
inequalities (PI) for p0 ≤ q ≤ p. Assume that E ⊂ X is a uniformly p-fat closed set. Then
there exist constants C > 0 and 0 < ε < p − p0, quantitatively, such that for all balls
B = B(w,R), with w ∈ E and 0 < R < (1/8) diam(X), and for all functions v ∈ Lip0(2B),
with 0 ≤ v ≤ 1 and v = 1 in E ∩B, it holds that

µ(B)R−(p−ε) ≤ C

∫
2B

Lip(v, ·)p−ε dµ . (16)

Proof. This proof is based on a similar idea as the proof of Lemma 2 in [11]. Let 0 < ε <
p − p0 be given by Theorem 3.1, and write q = p − ε and ` = (2τ)−1 ≤ 1/2, where τ is
the dilatation constant from the (q, q)-Poincaré inequality (9). Fix w, R, and v as in the
statement of the proposition. The doubling inequality (4) implies that there is a constant
C1 = CCD,τ > 0 such that µ(`B) ≥ C1µ(B). If vB > C1/4, we obtain from condition (PI)
and the Sobolev inequality [1, Theorem 5.51] for v ∈ Lip0(2B) that

C1/4 ≤
∫
B

|v| dµ ≤ CD

∫
2B

|v| dµ ≤ CR

(∫
2B

Lip(v, ·)q dµ
)1/q

,

and from this (16) follows easily.
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We may hence assume that vB ≤ C1/4. Let ψ ∈ Lip0(B) be a cut-off function, defined as

ψ(x) = max
{

0, 1− 2
R

dist
(
x, 1

2
B
)}

,

and take
u = min{ψ, 1− v}.

Since 1− v = 0 in E ∩B and ψ = 0 in X \B, we have that u ∈ Lip0(X \E). Observe that
u coincides with 1− v on (1/2)B, and therefore Lip(u, ·)|(1/2)B = Lip(v, ·)|(1/2)B.

Let F = {x ∈ `B : u(x) > 1/2}. We claim that µ(F ) ≥ (C1/2)µ(B). To prove this claim
we assume the contrary, namely, that µ(F ) < (C1/2)µ(B). Since v ≥ 0 and v = 1−u ≥ 1/2
in `B \ F , we obtain from the assumptions µ(`B) ≥ C1µ(B) and µ(F ) < (C1/2)µ(B) that∫

B

v dµ ≥
∫
`B\F

v dµ ≥ 1
2

(
µ(`B)− µ(F )

)
> 1

2

(
C1µ(B)− (C1/2)µ(B)

)
= 1

4
C1µ(B) .

This contradicts the assumption vB ≤ C1/4, and thus indeed µ(F ) ≥ (C1/2)µ(B).
Theorem 3.1, with ρ = `R, now implies that

(C1/2)µ(B) ≤ µ(F ) ≤ 2q
∫
`B

|u|q dµ ≤ CRq

∫
τ`B

Lip(u, ·)q dµ ≤ CRq

∫
2B

Lip(v, ·)q dµ .

This proves estimate (16) and concludes the proof. �

In a Euclidean space Rn, which supports the (1, p)-Poincaré inequalities for all 1 ≤ p <∞,
Proposition 3.2 yields immediately the self-improvement of uniform p-fatness. Indeed, we
can replace in our argument the Lipschitz function v ∈ Lip0(2B) with a function ṽ ∈ C∞0 (2B)
and the pointwise Lipschitz constant Lip(v, ·) with |∇ṽ|, whence the uniform (p− ε)-fatness
of E follows from estimates (14) and (16).

More generally, in a complete metric space X supporting a (1, p)-Poincaré inequality, we
can deduce the self-improvement of uniform fatness from Proposition 3.2 with the help of
some deep facts concerning analysis on metric spaces (see the proof below). Nevertheless,
with an additional argument using the interplay between uniform fatness and density condi-
tions for suitable Hausdorff contents, it is possible to obtain a version of the self-improvement
in a non-complete setting as well (Theorem 1.2), and hence in particular without the use
of Cheeger’s differentiation theory, but then the (p, p0)-Poincaré inequality, or at least the
validity of improved Poincaré inequalities (PI) for p0 ≤ q ≤ p, has to be explicitly assumed
for some exponent 1 < p0 < p; see Section 4 for details.

Proof of Theorem 1.1. Since the space X is assumed to be complete, the validity of the
improved Poincaré inequalities (PI) follows from the (1, p)-Poincaré inequality, as discussed
in Section 2.3. Hence we can apply Proposition 3.2. Moreover, by the deep result of Cheeger,
[4, Theorem 6.1] (see also [1, Theorem A.7]), the upper pointwise Lipschitz constant Lip(v, ·)
is a minimal (p − ε)-weak gradient of the Lipschitz function v, and so we obtain from
estimates (14) and (16) (and Remark 2.1) that the set E is indeed uniformly (p−ε)-fat. �

4. Self-improvement of uniform fatness in non-complete spaces

In this section we provide the additional argument that is needed for the proof of the
self-improvement result in the setting of non-complete metric spaces, Theorem 1.2. In fact,
we prove the following slightly stronger result (by Hölder’s inequality, the (p, p0)-Poincaré
inequality that was assumed in Theorem 1.2 implies the improved Poincaré inequalities (PI)
for p0 ≤ q ≤ p.)

Theorem 4.1. Let 1 < p < ∞ and suppose that X supports the improved (q, q)-Poincaré
inequalities (PI) for p0 ≤ q ≤ p. Assume that E ⊂ X is a uniformly p-fat closed set and

that E ∩ B(w, r) is compact for all w ∈ E and all r > 0. Then there exists 0 < ε < p− p0
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such that E is uniformly (p− ε)-fat; here both ε and the constant of uniform (p− ε)-fatness
are quantitative.

The proof of Theorem 4.1 is based on Proposition 3.2, but we also need some auxil-
iary results related to Hausdorff contents. Note that these auxiliary results are essentially
established in [11], but there the space X is assumed to be complete.

The Hausdorff content of codimension q of a set K ⊂ X is defined by

H̃q
ρ(K) = inf

{∑
k

µ(B(xk, rk)) r
−q
k : K ⊂

⋃
k

B(xk, rk), xk ∈ K, 0 < rk ≤ ρ

}
.

Density conditions for these Hausdorff contents are known to be closely related to uniform
fatness. Indeed, from Proposition 3.2 we obtain the following result.

Lemma 4.2. Let 1 < p < ∞ and suppose that X supports the improved (q, q)-Poincaré
inequalities (PI) for p0 ≤ q ≤ p. Assume that E ⊂ X is a uniformly p-fat closed set. Then
there exist constants C > 0 and p0 < q < p, quantitatively, such that

H̃q
R/2

(
E ∩B(w,R)

)
≥ Cµ

(
B(w,R)

)
R−q (17)

whenever w ∈ E and 0 < R < (1/8) diam(X) are such that E ∩B(w,R) is compact.

Proof. Fix w ∈ E and 0 < R < (1/8) diam(X), write B = B(w,R), and assume that E ∩B
is compact. Let {Bk}, where Bk = B(xk, rk) with xk ∈ E ∩ B and 0 < rk ≤ R/2, be
a cover of E ∩ B. Since E ∩ B is compact, we may assume that this cover is finite, i.e.
E ∩B ⊂

⋃N
k=1 Bk. Also let q = p− ε, where ε is as in Proposition 3.2.

Define
v(x) = max

1≤k≤N

{
0, 1− rk−1 dist(x,Bk)

}
.

Then v is a Lipschitz function, v = 1 in E ∩B, v = 0 outside 2B, and 0 ≤ v ≤ 1. Moreover,
the upper pointwise Lipschitz constant of v satisfies Lip(v, x) ≤ max1≤k≤N rk

−1χ2Bk
(x) for

all x ∈ X, and hence

Lip(v, x)q ≤
N∑
k=1

rk
−qχ2Bk

(x)

for all x ∈ 2B. Thus we obtain from Proposition 3.2 (and the doubling condition) that

µ(B)R−q ≤ C

∫
2B

Lip(v, x)q dµ(x) ≤ C

N∑
k=1

µ
(
2Bk

)
rk
−q ≤ C

N∑
k=1

µ(Bk)rk
−q .

Taking the infimum over all such covers of E ∩B yields the claim. �

On the other hand, from (17) we get back to t-uniform fatness, for any t > q.

Lemma 4.3. Let 1 < q < ∞ and suppose that X supports a (1, t)-Poincaré inequality for
all t > q. Let E ⊂ X be a closed set. If there exists C > 0 such that the density condition

H̃q
R/2

(
E ∩B(w,R)

)
≥ Cµ

(
B(w,R)

)
R−q (18)

holds for all w ∈ E and all 0 < R < (1/8) diam(X), then E is uniformly t-fat for all t > q.

Proof. Fix t > q. Let w ∈ E and 0 < R < (1/8) diam(X), write B = B(w,R), and let
u ∈ Lip0(2B) be such that 0 ≤ u ≤ 1 and u = 1 in E ∩ B. By the capacity comparison
estimate (14) and Remark 2.1, it suffices to show that there exists a constant C > 0,
independent of w, R and u, such that

µ(B)R−t ≤ C

∫
2B

gt dµ (19)

for all t-weak upper gradients g of u such that g = gχ2B ∈ Lt(X).
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If u2B ≥ 1/2, then it follows from the Sobolev inequality [1, Theorem 5.51] that

1/2 ≤
∫

2B

u dµ ≤ CX,pR

( ∫
2B

gt dµ

)1/t

,

and from this (19) follows easily.
On the other hand, if u2B < 1/2, we can use similar reasoning as in [11, p. 729] (which

is based on the proof of [7, Theorem 5.9]), but let us recall the main steps for convenience.
Since t > q and 1/2 < u(x)− u2B = |u(x)− u2B| for each x ∈ E ∩ B, we can apply a well-
known chaining argument (using also the continuity of u and the (1, t)-Poincaré inequality)
to find for each x ∈ E ∩B a ball Bx = B(x, rx) with 0 < rx ≤ 3R such that

µ(Bx)r
−q
x ≤ CX,t,qR

t−q
∫
τBx

gt dµ . (20)

The 5r-covering lemma then yields us a countable collection of points x1, x2, . . . ∈ E ∩B
such that the corresponding balls Bk = τBxk are pairwise disjoint, but the balls 5Bk cover
E ∩B. Using the assumption (18) for this particular cover and the doubling property of µ,
we find that

µ(B)R−q ≤ C
∑
k

µ(Bxk)r
−q
xk
, (21)

whence estimate (20) and the pairwise disjointness of the balls Bk yield the claim (19). (In
particular, here we may assume that the radii of the balls 5Bk are all less than R/2, since
otherwise the claim readily follows from the doubling property of µ and inequality (20)
applied to a ball Bxk with 5τrxk > R/2). �

The proof of Theorem 4.1. Since we assumed that E is uniformly p-fat and E ∩ B(w,R) is
compact for all w ∈ E and all R > 0, we have by Lemma 4.2 that

H̃q
R/2

(
E ∩B(w,R)

)
≥ Cµ

(
B(w,R)

)
R−q

for all w ∈ E and all 0 < R < (1/8) diam(X), where p0 < q < p. But now we can fix
q < t < p, and Lemma 4.3 yields that E is uniformly t-fat. Notice, in particular, that the
(1, t)-Poincaré inequality that is needed in the proof of Lemma 4.3 is valid by the assumed
improved Poincaré inequalities (PI) since p0 < t < p. �

5. Improved local Hardy inequalities

This section is devoted to the proof of the improved local Hardy inequality (15) that is
reformulated as Proposition 5.7. The proof of this proposition is divided in the following
three parts. In §5.1 we prepare for the localization of Hardy inequalities by truncating
the set E and proving a local absorption lemma. In §5.2 we then obtain localized Hardy
inequalities with exponent p, and in §5.3 we finally establish their self-improvement.

5.1. Truncation. We begin with some technical tools that will be needed in the proofs of
the local Hardy inequalities. The following truncation procedure provides us with the closed
set EB ⊂ B that was required in the proof of Theorem 3.1. A similar procedure was used
in [14, p. 180] when proving the self-improvement of uniform (α, p)-fatness conditions in
Rn, and later also in [18], for weighted Rn, and in [2], for general metric spaces.

We write N = {1, 2, 3, . . .} and N0 = N ∪ {0}.

Lemma 5.1. Assume that E ⊂ X is a closed set and that B = B(w, r) for w ∈ E and

r > 0. Let E0
B = E ∩ 1

2
B, define inductively, for every j ∈ N, that

Ej
B =

⋃
x∈Ej−1

B

E ∩B(x, 2−j−1r) , and set EB =
⋃
j∈N0

Ej
B.

Then the following statements hold:
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(a) w ∈ EB
(b) EB ⊂ E
(c) EB ⊂ B
(d) Ej−1

B ⊂ Ej
B ⊂ EB for every j ∈ N.

Proof. Part (a) is is true since w ∈ E0
B. Part (b) follows from the facts that E is closed and

∪jEj
B ⊂ E by definition. To verify (c), we fix x ∈ Ej

B. If j = 0, then x ∈ B. If j > 0, then
by induction we find a sequence xj, . . . , x0 such xj = x and, for each k = 0, . . . , j, xk ∈ Ek

B

and xk ∈ E ∩B(xk−1, 2−k−1r) if k > 0. It follows that

d(x,w) ≤
j∑

k=1

d(xk, xk−1) + d(x0, w) ≤
j∑

k=1

2−k−1r + 2−1r < r .

Hence, x ∈ B(w, r) ⊂ B. We have shown that Ej
B ⊂ B whenever j ∈ N0, whence it follows

that also EB ⊂ B. To prove (d) we fix j ∈ N and x ∈ Ej−1
B . By definition we have x ∈ E

and, hence, x ∈ E ∩B(x, 2−j−1r) ⊂ Ej
B. �

Next we show that Lemma 5.1, in fact, truncates the set E to B in such a way that there

are always certain balls B̂ whose intersection with the truncated set EB contain big pieces
of the original set E (by these balls we later employ the uniform fatness of E).

Lemma 5.2. Let E, B, and EB be as in Lemma 5.1. Suppose that m ∈ N0 and x ∈ X

is such that dEB(x) < 2−m+1r. Then there exists a ball B̂ = B(yx,m, 2
−m−1r) such that

yx,m ∈ E,

2−1B̂ ∩ E = 2−1B̂ ∩ EB , (22)

and σB̂ ⊂ B(x, σ2−m+2r) for every σ ≥ 1.

Proof. In this proof we will apply Lemma 5.1 several times without further notice. Since
dEB(x) < 2−m+1r there exists y ∈ ∪j∈N0E

j
B ⊂ E such that d(y, x) < 2−m+1r. Let us fix

j ∈ N0 such that y ∈ Ej
B. There are two cases to be treated.

First, let us consider the case when j > m ≥ 0. By induction, there are points yk ∈ Ek
B

with k = m, . . . , j such that yj = y and yk ∈ E∩B(yk−1, 2−k−1r) for every k = m+ 1, . . . , j.
It follows that

d(ym, y) = d(yj, ym) ≤
j∑

k=m+1

d(yk, yk−1) ≤
j∑

k=m+1

2−k−1r < 2−m−1r .

Take yx,m = ym ∈ Em
B ⊂ E and B̂ = B(ym, 2

−m−1r). If σ ≥ 1 and z ∈ σB̂, then

d(z, x) ≤ d(z, ym) + d(ym, y) + d(y, x)

≤ σ2−m−1r + 2−m−1r + 2−m+1r < σ2−m+2r ,

and thus σB̂ ⊂ B(x, σ2−m+2r). Moreover, since ym ∈ Em
B , we have

2−1B̂ ∩ E = E ∩B(ym, 2−m−2r) ⊂
⋃
z∈EmB

E ∩B(z, 2−m−2r) = Em+1
B ⊂ EB .

On the other hand EB ⊂ E, and thus 2−1B̂ ∩ E = 2−1B̂ ∩ EB.

Let us then consider the case m ≥ j ≥ 0. We take yx,m = y ∈ E and B̂ = B(y, 2−m−1r).

Then, for every σ ≥ 1 and each z ∈ σB̂,

d(z, x) ≤ d(z, y) + d(y, x) < σ2−m−1r + 2−m+1r < σ2−m+2r ,

and so σB̂ ⊂ B(x, σ2−m+2r). Since y ∈ Ej
B ⊂ Em

B ⊂ EB we can repeat the argument above,

with ym replaced by y, and it follows as above that 2−1B̂ ∩ E = 2−1B̂ ∩ EB. �
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One of the reasons for truncating the set E, in the first place, is to obtain the absorption
Lemma 5.3. This lemma is needed twice during the rest of the paper, with slightly different
contexts, and hence there are two different assumptions concerning the validity of Poincaré
inequalities. The dependencies of the constants below are rather delicate, and it is important
to track them carefully; to this end, recall our notational convention from §2.5.

Lemma 5.3. Suppose that either

(i) 1 ≤ q = p <∞ and X supports a (1, p)-Poincaré inequality; or
(ii) 1 < p0 < p < ∞ and X supports the improved Poincaré inequalities (PI) for expo-

nents p0 ≤ q ≤ p.

In addition, let E, B, and EB be as in Lemma 5.1, let σ ≥ 1 and ς ≥ 2, and write B∗ = ςB.
Assume that u ∈ Lip(X) is such that u = 0 on EB, and that g is a q-weak upper gradient
of u such that inequality∫

B∗\EB

|u(x)|q

dEB(x)q
dµ(x) ≤ C1

∫
σB∗\EB

|u(x)|q

dEB(x)q
dµ(x) + C2

∫
σB∗

g(x)q dµ(x)

holds with some constants C1, C2 > 0. Then

C3

∫
σB∗\EB

|u(x)|q

dEB(x)q
dµ(x) ≤ C4

∫
τσB∗

g(x)q dµ(x) ,

where C3 = 1− C1(1 + CCD,σ,ς,p) and C4 = (1 + C2)CX,σ,ς,q.

Proof. Since EB ⊂ B and ς ≥ 2, we obtain the estimate∫
(σB∗\EB)\B∗

|u(x)|q

dEB(x)q
dµ(x) ≤ r−q

∫
σB∗
|u(x)|q dµ(x)

≤ 3qr−q
(∫

σB∗
|u(x)− uσB∗|q dµ(x) + µ(σB∗)|uσB∗ − uB∗|q + µ(σB∗)|uB∗ |q

)
.

By the doubling inequality (4) and the (q, q)-Poincaré inequality (9) (recall that in case (i),
i.e. for q = p, this is a consequence of the (1, p)-Poincaré inequality, cf. [1, Corollary 4.24])
we obtain

3qr−q
(∫

σB∗
|u(x)− uσB∗|q dµ(x) + µ(σB∗)|uσB∗ − uB∗|q

)
≤ Cσ,q,CDr

−q
∫
σB∗
|u(x)− uσB∗|q dµ(x) ≤ CX,σ,ς,q

∫
τσB∗

g(x)q dµ(x) .

On the other hand, by the assumption,

3qr−qµ(σB∗)|uB∗|q ≤ 3qCσ,CDr
−q
∫
B∗\EB

|u(x)|q dµ(x)

≤ 3qςqCσ,CD

∫
B∗\EB

|u(x)|q

dEB(x)q
dµ(x)

≤ 3pςpCσ,CDC1

∫
σB∗\EB

|u(x)|q

dEB(x)q
dµ(x) + 3qςqCσ,CDC2

∫
σB∗

g(x)q dµ(x) .

Combining the estimates above, we find that∫
σB∗\EB

|u(x)|q

dEB(x)q
dµ(x) =

∫
B∗\EB

|u(x)|q

dEB(x)q
dµ(x) +

∫
(σB∗\EB)\B∗

|u(x)|q

dEB(x)q
dµ(x)

≤ C1(1 + CCD,σ,ς,p)

∫
σB∗\EB

|u(x)|q

dEB(x)q
dµ(x) + C4

∫
τσB∗

g(x)q dµ(x) ,

where C4 = (1 + C2)CX,σ,ς,q. This concludes the proof. �
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5.2. Local Hardy. In this section we prove Proposition 5.4 that gives a local p-Hardy
inequality with respect to the truncated set EB (Theorem 1.3 is also proved at the end of
this section). This is done by adapting the proof of [11, Theorem 3] to the present setting.
The proof in [11] is, in turn, based on the ideas of Wannebo [19]; see also [3].

Throughout this section, we will assume that X supports a (1, p)-Poincaré inequality,
whence X supports also a (p, p)-Poincaré inequality. Both of these inequalities are assumed
to be valid with constants CP > 0 and τ ≥ 1.

Proposition 5.4. Let 1 < p <∞ and suppose that X supports a (1, p)-Poincaré inequality.
Assume that E ⊂ X is a uniformly p-fat closed set, let w ∈ E and 0 < r < (1/8) diam(X),
and let EB be as in Lemma 5.1 for B = B(w, r). Let u ∈ Lip(X) and let g be a p-weak
upper gradient of u such that u = 0 = g in an open set U ⊂ X satisfying the condition
dist(EB, X \ U) > 0 (or the condition X = U). Then∫

8τB\EB

|u(x)|p

dEB(x)p
dµ(x) ≤ CH

∫
8τ2B

g(x)p dµ(x) . (23)

Here CH = CX,p,c0 and the number 0 < c0 ≤ 1 is the constant from the uniform p-fatness
condition (12) for E.

Recall that we do not assume X to be complete, and hence it is not necessarily true that
dist(K,X \U) > 0 whenever K is a closed subset of a bounded open set U . For this reason
we make in Proposition 5.4 the explicit assumption that dist(EB, X \ U) > 0.

The proof of Proposition 5.4 is based upon covering and absorption arguments, and it will
be completed at the end of this section. We begin with Lemmata 5.5 and 5.6 that provide
information concerning the individual balls in the following covering families. For the rest
of this section we assume that p, X, E, B = B(w, r), and EB are as in Proposition 5.4
(these are considered arbitrary but fixed).

For each m ∈ Z, let us write

Gm = {x ∈ 8τB : 2−mr ≤ dEB(x) < 2−m+1r}
and

G̃m =
∞⋃
k=m

Gk = {x ∈ 8τB : 0 < dEB(x) < 2−m+1r} .

For every m ∈ N0 we let Gm be a (countable) cover of Gm with open balls B̃ that are

centered at Gm and of radius 2−m+2r. Moreover, we require that {2−1B̃ : B̃ ∈ Gm} is a
disjoint family, whence there exits C = CCD,τ > 0 such that∑

B̃∈Gm

χτB̃ ≤ C . (24)

The existence of such a cover follows using a maximal packing argument and the doubling
property of µ.

Lemma 5.5. Let us define ` = dlog2(τ)e+2. Then, for each m ∈ N0 and every ball B̃ ∈ Gm,
we have

τB̃ \ EB ⊂ G̃m−` . (25)

Proof. Fix m ∈ N0 and B̃ ∈ Gm. By definition, we have B̃ = B(xB̃, 2
−m+2r) with xB̃ ∈ Gm.

Let x ∈ τB̃ \ EB. Then dEB(x) > 0. Moreover,

dEB(x) = dist(x,EB) ≤ d(x, xB̃) + dist(xB̃, EB)

< τ2−m+2r + 2−m+1r < τ2−m+3r ≤ 2−(m−`)+1r .

Since m ≥ 0, a modification of the previous estimate also yields

d(x,w) ≤ dist(x,B) + r ≤ dist(x,EB) + r < 4τr + 2r + r < 8τr ,
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and it follows that x ∈ B(w, 8τr) = 8τB. We can now conclude that x ∈ G̃m−`. �

The uniform p-fatness of E is exclusively used in the following lemma.

Lemma 5.6. Let v be a Lipschitz function on X such that v = 0 on EB and let g be a

p-weak upper gradient of v. Then, for every m ∈ N0 and each B̃ ∈ Gm,∫
B̃

|v(x)|p dµ(x) ≤ CX,p
c0

2−mprp
∫
τB̃

g(x)p dµ(x) . (26)

Proof. Fix m ∈ N0 and B̃ = B(xB̃, 2
−m+2r) ∈ Gm. Then, by definition, xB̃ ∈ Gm. We apply

Lemma 5.2 and thereby associate to B̃ a smaller open ball B̂ ⊂ B̃, centered at E and of
radius 2−m−1r < (1/8) diam(X). Note first that∫

B̃

|v(x)|p dµ(x) ≤ Cp

(∫
B̃

|v(x)− vB̃|
p dµ(x) + |vB̃ − vB̂|

p+|vB̂|
p

)
.

Here, by Hölder’s inequality and the doubling condition (4),

|vB̃ − vB̂|
p ≤

(∫
B̂

|v(x)− vB̃| dµ(x)

)p
≤ CCD

∫
B̃

|v(x)− vB̃|
p dµ(x) ,

and therefore, by the (p, p)-Poincaré inequality, we have that

Cp

(∫
B̃

|v(x)− vB̃|
p dµ(x) + |vB̃ − vB̂|

p

)
≤ CX,p2

−mprp
∫
τB̃

g(x)p dµ(x) .

On the other hand, by the capacitary Poincaré inequality (13),

|vB̂|
p ≤

∫
B̂

|v(x)|p dµ(x) ≤ CX

capp(2
−1B̂ ∩ {v = 0}, B̂)

∫
τB̂

g(x)p dµ(x) .

Recall that v(x) = 0 whenever x ∈ EB (by assumption) and 2−1B̂ ∩ EB = 2−1B̂ ∩ E by
Lemma 5.2. Therefore, using monotonicity, the uniform p-fatness condition (12), and the
comparison inequality (14), we obtain

capp(2
−1B̂ ∩ {v = 0}, B̂) ≥ capp(2

−1B̂ ∩ EB, B̂) = capp(2
−1B̂ ∩ E, B̂)

≥ c0 capp(2
−1B̂, B̂) ≥ c0 µ(2−1B̂)

CX,p2−mprp
.

Finally, since τB̂ ⊂ τB̃, it follows that

Cp|vB̂|
p ≤ Cp

∫
B̂

|v(x)|p dµ(x) ≤ CX,p
c0

2−mprp

µ(2−1B̂)

∫
τB̃

g(x)p dµ(x) .

Inequality (26) follows from the above estimates and the doubling condition (4). �

Proof of Proposition 5.4. Let us first assume that v ∈ Lip0(X \EB) and that gv is a p-weak
upper gradient of v that also vanishes in the set EB. Then, by summing the inequalities (26)
and using (24) and (25) we obtain, for every m ∈ N0,∫

Gm

|v(x)|p dµ(x) ≤
∑
B̃∈Gm

∫
B̃

|v(x)|p dµ(x)

≤ CX,p
c0

2−mprp
∑
B̃∈Gm

∫
τB̃\EB

gv(x)p dµ(x)

≤ CX,p
c0

2−mprp
∫
G̃m−`

gv(x)p dµ(x) .

(27)
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Let 0 < β < 1 be a small number, that will be fixed later. We multiply (27) by 2m(p+β)r−p−β

and sum the inequalities to obtain the estimate∫
2B\EB

|v(x)|p

dEB(x)p+β
dµ(x) ≤

∫
G̃0

|v(x)|p

dEB(x)p+β
dµ(x) =

∞∑
m=0

∫
Gm

|v(x)|p

dEB(x)p+β
dµ(x)

≤
∞∑
m=0

2m(p+β)r−p−β
∫
Gm

|v(x)|p dµ(x)

≤ CX,p
c0

r−β
∞∑
m=0

2mβ
∫
G̃m−`

gv(x)p dµ(x)

=
CX,p
c0

r−β
∞∑

k=−`

k+∑̀
m=0

2mβ
∫
Gk

gv(x)p dµ(x)

≤ CX,p
c0β

∞∑
k=−`

2kβr−β
∫
Gk

gv(x)p dµ(x) ≤ CX,p
c0β

∫
8τB\EB

gv(x)p

dEB(x)β
dµ(x) .

(28)

Now we come to the main line of the argument. Let u be a Lipschitz function on X and
let g be a p-weak upper gradient of u, both of which vanish in an open set U ⊂ X satisfying
the condition dist(EB, X \ U) > 0. We aim to show that inequality (23) holds, and so we
may assume that g ∈ Lp(8τB) (recall that τ ≥ 1).

Consider the Lipschitz function on A = 8τB ∪ (X \ 10τB) that coincides with u in 8τB
and vanishes outside 10τB, and let ũ be the McShane extension (5) of this function to all
of X. Then the function

g̃ = gχ8τB + Lip(ũ, ·)χX\8τB ∈ Lp(X)

is a p-weak upper gradient of ũ, cf. the proof of [1, Theorem 2.6]. Define v(x) = ũ(x)dEB(x)β/p

for every x ∈ X. Then v(x) = u(x)dEB(x)β/p for every x ∈ 8τB and in particular v vanishes
in EB. Moreover, by applying the assumptions on u and g in combination with the Leibniz
and chain rules of Theorems 2.15 and 2.16 in [1], we find that v has a p-weak upper gradient
gv such that

gv(x) ≤ g(x)dEB(x)β/p +
β

p
|u(x)|dEB(x)β/p−1

for every x ∈ 8τB; in particular, also gv vanishes on the set EB. Using estimate (28) for
the pair v and gv, we obtain∫

2B\EB

|u(x)|p

dEB(x)p
dµ(x) =

∫
2B\EB

|v(x)|p

dEB(x)p+β
dµ(x) ≤ CX,p

c0β

∫
8τB\EB

gv(x)p

dEB(x)β
dµ(x)

≤ CX,p
c0β

∫
8τB

g(x)p dµ(x) +
CX,p
c0

βp−1

∫
8τB\EB

|u(x)|p

dEB(x)p
dµ(x) .

We can now apply Lemma 5.3 with parameters

ς = 2 , σ = 4τ , q = p , C1 =
CX,p
c0

βp−1 , C2 =
CX,p
c0β

.

Recall our convention in §2.5 and choose 0 < β < 1, depending on CX , p, and c0, such that

C3 = 1− C1(1 + CCD,σ,ς,p) ≥
1

2
.

Then, Lemma 5.3 yields that∫
8τB\EB

|u(x)|p

dEB(x)p
dµ(x) ≤ CX,p,c0

∫
8τ2B

g(x)p dµ(x) ,

and this concludes the proof. �
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Before entering the final stage in our proof of the self-improvement of uniform p-fatness, we
take a small side step and give a proof for Theorem 1.3 that was stated in the introduction.

Proof of Theorem 1.3. Fix w ∈ E and 0 < r < (1/8) diam(X), and let EB be as in
Lemma 5.1 for the ball B = B(w, r). Fix u ∈ Lip0(X \ E) and a p-weak upper gradient g
of u. Since we first aim to prove estimate (29) below, we can assume that g ∈ Lp(8τ 2B).

For every δ > 0, we define a Lipschitz function uδ = max{0, |u| − δ}. Since g is clearly a
p-weak upper gradient of uδ, it is straightforward to show that the function

h = gχ8τ2B + Lip(uδ, ·)χX\8τ2B
is a p-weak upper gradient of uδ, cf. the proof of [1, Theorem 2.6]. Since uδ vanishes in the set
Uδ = {|u| < δ} we can apply the local version of the glueing lemma [1, Lemma 2.19] with uδ
and h. From this we can deduce that gδ = hχX\Uδ is a p-weak upper gradient of uδ. Observe
that both uδ and gδ vanish in the open neighbourhood Uδ of E and dist(EB, X \ Uδ) > 0 if
Uδ 6= X. Since E ∩ (1/2)B ⊂ EB and w ∈ EB, we see that dE = dEB in (1/4)B. Hence, by
monotone convergence and Proposition 5.4, we conclude that∫

(1/4)B\E

|u(x)|p

dE(x)p
dµ(x) = lim

δ→0

∫
(1/4)B\E

|uδ(x)|p

dEB(x)p
dµ(x)

≤ CH lim inf
δ→0

∫
8τ2B

gδ(x)p dµ(x) ≤ CH

∫
8τ2B

g(x)p dµ(x) .

(29)

The desired inequality (3) now follows by a simple change of variables. �

5.3. Improvement. In this section we improve the ‘local integral Hardy inequality’, that
was established in Proposition 5.4, by adapting ideas from Koskela–Zhong [13] to the present
setting and applying again the absorption Lemma 5.3. This improvement argument consti-
tutes the final step in the proof of Theorem 3.1.

Proposition 5.7. Let 1 < p <∞ and suppose that X supports the improved (q, q)-Poincaré
inequalities (PI) for p0 ≤ q ≤ p. Assume that E ⊂ X is a uniformly p-fat closed set, let
w ∈ E and 0 < r < (1/8) diam(X), and let EB be as in Lemma 5.1 for B = B(w, r). Then
there exists constants 0 < ε = εX,p0,p,CH < p− p0 and C > 0 such that the inequality∫

12τ2B\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x) ≤ C

∫
12τ3B

Lip(u, x)p−ε dµ(x) (30)

holds whenever u ∈ Lip0(X \ E). Here CH = CX,p,c0 is the constant from Proposition 5.4.

In the proof of Proposition 5.7, we use the restricted maximal function MRu at x ∈ X, for
R : X → [0,∞) and a locally integrable function u on X, that is defined by MRu(x) = |u(x)|
if R(x) = 0, and otherwise by

MRu(x) = sup
r

∫
B(x,r)

|u(y)| dµ(y) ,

where the supremum is taken over all radii 0 < r < R(x).

Proof of Proposition 5.7. Without loss of generality, we may assume that CH ≥ 1 in (23).
We will first prove inequality (30) under the additional assumption that u ∈ Lip(X) is such
that u = 0 in an open set U ( X for which dist(E,X \ U) > 0. Throughout this proof, we
write g = Lip(u, ·); in particular, also g = 0 in U .

Fix a number λ > 0, and define Fλ = Hλ ∩Gλ, where

Hλ = {x ∈ 8τ 2B : |u(x)| ≤ λdEB(x)} ,

Gλ =
{
x ∈ 8τ 2B :

(
MdEB (x)/2 g

p0(x)
)1/p0 ≤ λ

}
.
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We claim that the restriction of u to Fλ is (CX,p0λ)-Lipschitz. Indeed, let x, y ∈ Fλ, x 6= y,
be such that dEB(y) ≤ dEB(x). If dEB(x) ≥ 5τd(x, y), then

dEB(y) ≥ dEB(x)− d(x, y) ≥ 4τd(x, y) .

Thus a standard chaining argument [5, Theorem 3.2], which is based on the facts that µ
is doubling and that the (1, p0)-Poincaré inequality holds for the pair u and g = Lip(u, ·),
yields that

|u(x)− u(y)| ≤ CX,p0 d(x, y)
((
M2τd(x,y) g

p0(x)
)1/p0 +

(
M2τd(x,y) g

p0(y)
)1/p0

)
≤ CX,p0 d(x, y)

((
MdEB (x)/2 g

p0(x)
)1/p0 +

(
MdEB (y)/2 g

p0(y)
)1/p0

)
≤ CX,p0λd(x, y) .

On the other hand, if dEB(y) ≤ dEB(x) ≤ 5τd(x, y), then

|u(x)− u(y)| ≤ |u(x)|+ |u(y)| ≤ λ(dEB(x) + dEB(y)) ≤ 10τλd(x, y).

These two estimates show that u is Lipschitz on Fλ.
Next we use the McShane extension (5) and extend the restriction of u on A = Fλ to a

(CX,p0λ)-Lipschitz function ũ on X. Then also ũ vanishes on an open set Ũ ⊂ U such that

dist(EB, X \ Ũ) > 0; indeed, if x ∈ Ũ = {x ∈ 8τ 2B : dEB(x) < dist(EB, X \ U)/2} then
u(x) = 0 and x ∈ Fλ (here we use the fact that g = Lip(u, ·) = 0 in U), whence ũ(x) = 0.

By [1, Lemma 2.19], the bounded function

g̃(x) = χFλ(x)g(x) + CX,p0λχX\Fλ(x)

is a p-weak upper gradient of ũ that vanishes on Ũ . Hence, applying Proposition 5.4 to the
pair ũ and g̃, we find that∫

(8τB\EB)∩Fλ

|u(x)|p

dEB(x)p
dµ(x) ≤

∫
8τB\EB

|ũ(x)|p

dEB(x)p
dµ(x)

≤ CH

∫
Fλ

g(x)p dµ(x) + CHC
p
X,p0

λpµ(8τ 2B \ Fλ)

and, since CH ≥ 1, that∫
(8τB\EB)∩Hλ

|u(x)|p

dEB(x)p
dµ(x)

≤ CH

∫
Fλ

g(x)p dµ(x) + CHC
p
X,p0

λpµ(8τ 2B \ Fλ) +

∫
(Hλ\EB)\Gλ

|u(x)|p

dEB(x)p
dµ(x)

≤ CH

∫
Gλ

g(x)p dµ(x) + CHCX,p0,pλ
p
(
µ(8τ 2B \ Fλ) + µ(Hλ \Gλ)

)
≤ CH

∫
Gλ

g(x)p dµ(x) + CHCX,p0,pλ
p
(
µ(8τ 2B \Hλ) + µ(8τ 2B \Gλ)

)
.

The above estimate holds for all λ > 0. We multiply it by λ−1−ε (here 0 < ε < (p− p0)/2
is a parameter to be fixed later) and integrate the resulting estimate over (0,∞). This gives

ε−1

∫
8τB\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x)

≤ CH

∫ ∞
0

λ−1−ε
∫
Gλ

g(x)p dµ(x) dλ

+ CHCX,p0,p

∫ ∞
0

λp−1−ε(µ(8τ 2B \Hλ) + µ(8τ 2B \Gλ)
)
dλ .
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By the definition of Gλ, and the observation that g(x) ≤
(
MdEB (x)/2 g

p0(x)
)1/p0 for a.e.

x ∈ 8τ 2B, we find that the first term on the right-hand side is dominated by

CHε
−1

∫
8τ2B

g(x)p−ε dµ(x) .

Using the definitions of Hλ and Gλ, the second term on the right-hand side can be estimated
from above by

CHCX,p0,p
p− ε

(∫
8τ2B\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x) +

∫
8τ2B

(
MdEB (x)/2 g

p0(x)
) p−ε
p0 dµ(x)

)
.

Since dEB(x)/2 ≤ 4τ 2r for all x ∈ 8τ 2B, we have by the Hardy–Littlewood maximal theorem,
see e.g. [1, Theorem 3.13], that∫

8τ2B

(
MdEB (x)/2 g

p0(x)
) p−ε
p0 dµ(x) ≤

∫
X

(
M(χ12τ2B g

p0)(x)
) p−ε
p0 dµ(x)

≤ CCD,p0,p,ε

∫
12τ2B

g(x)p−ε dµ(x) ;

here M denotes the usual unrestricted maximal operator.
By combining the estimates above, we obtain∫

8τB\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x)

≤ C1

∫
8τ2B\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x) + C2

∫
12τ2B

g(x)p−ε dµ(x) ,

where

C1 = CHCX,p0,pε(p− ε)−1 and C2 = CH(1 + CX,p0,pε(p− ε)−1CCD,p0,p,ε) .

In order to apply Lemma 5.3, we write

ς = 8τ , σ = 3τ/2 , q = p− ε .
Recall our convention in §2.5 and choose 0 < ε < (p − p0)/2, depending on X, p0, p, and
CH , in such a way that

C3 = 1− C1(1 + CCD,σ,ς,p) ≥ 1/2 .

Then, Lemma 5.3 yields that∫
12τ2B\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x) ≤ 2C3

∫
12τ2B\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x) ≤ 2C4

∫
12τ3B

g(x)p−ε dµ(x) ,

where C4 = (1 +C2)CX,σ,ς,p−ε. This proves the claim in the case where u = 0 in an open set
U ⊂ X with dist(E,X \ U) > 0.

To prove the general case, let u ∈ Lip0(X \ E). Clearly, we may assume that u does not
vanish everywhere in X. For every δ > 0, we define a Lipschitz function uδ = max{0, |u|−δ}.
Now Lip(uδ, ·) ≤ Lip(u, ·) and uδ vanishes in the open neighbourhood Uδ = {|u| < δ} of E.
Thus, by monotone convergence and the special case of inequality (30) that was established
above we conclude that∫

12τ2B\EB

|u(x)|p−ε

dEB(x)p−ε
dµ(x) = lim

δ→0

∫
12τ2B\EB

|uδ(x)|p−ε

dEB(x)p−ε
dµ(x)

≤ C lim inf
δ→0

∫
12τ3B

Lip(uδ, x)p−ε dµ(x)

≤ C

∫
12τ3B

Lip(u, x)p−ε dµ(x) .

This proofs the claim in the general case u ∈ Lip0(X \ E). �
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