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This talk is based on parts of the following works (in chronological order):

[LT] J. Lehrbäck and H. Tuominen. A note on the dimensions of
Assouad and Aikawa, J. Japan Math. Soc. 65(2): 343–356, 2013.

[LS] J. Lehrbäck and N. Shanmugalingam. Quasiadditivity of
variational capacity, Potential Anal. (to appear) arXiv:1211.6933

[KLV] A. Käenmäki, J. Lehrbäck and M. Vuorinen. Dimensions,
Whitney covers, and tubular neighborhoods. Indiana Univ. Math. J. (to
appear) arXiv:1209.0629

[L] J. Lehrbäck. Hardy inequalities and Assouad dimensions, in
preparation.
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1. Metric spaces
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Dimensions via local covers

Let X be a metric space.

How to describe the (local) dimension of a set E ⊂ X ?

Take a piece of a the set, i.e. E ∩ B(w ,R), where w ∈ E ,
cover this with balls of radius 0 < r < R,
and count how many balls are needed.
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(upper) Assouad dimension

Let E ⊂ X . We consider all exponents λ ≥ 0 for which there is
C = C (E , λ) ≥ 1 s.t. E ∩ B(w ,R) can be covered by at most C (r/R)−λ

balls of radius r for all 0 < r < R < diam(E ) and w ∈ E .

The infimum of such exponents λ is the (upper) Assouad dimension
dimA(E ).

Recall that a metric space (X , d) is doubling if there is N = N(X ) ∈ N so
that any closed ball B(x , r) ⊂ X can be covered by at most N balls of
radius r/2. Iteration of this doubling condition shows that then
dimA(E ) ≤ dimA(X ) ≤ log2 N for all E ⊂ X . In particular:

Lemma

A metric space X is doubling if and only if dimA(X ) <∞.
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lower Assouad dimension

Conversely: consider all λ ≥ 0 for which there is c > 0 s.t. if
0 < r < R < diam(E ), then for every w ∈ E at least c(r/R)−λ balls of
radius r are needed to cover E ∩ B(w ,R). The supremum of all such λ is
the lower Assouad dimension of E .

Recall that a set E ⊂ X is uniformly perfect if #E ≥ 2 and there is C ≥ 1
s.t. for every w ∈ E and r > 0 we have

(
B(w , r) ∩ E

)
\ B(w , r/C ) 6= ∅

whenever E \ B(w , r) 6= ∅.

Lemma

A set E is uniformly perfect if and only if dimA(E ) > 0.
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the example

In our example

dimA(E ) = log 4/ log 3 because of the snowflake part

dimA(E ) = 0 because of the isolated point

(without the isolated point would have dimA(E ) = 1)
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some comments on Assouad dimensions

(Upper) Assouad dimension was introduced by P. Assouad around 1980 in
connection to bi-Lipschitz embedding problem between metric and
Euclidean spaces. However, equivalent (or closely related) concepts have
appeared under different names, e.g. (uniform) metric dimension, some
dating back (at least) to [Bouligand 1928]. See [Luukkainen 1998] for a
nice account on the basic properties of (upper) Assouad dimension as well
as some historical comments.

Lower Assouad dimension has (essentially) appeared under names lower
dimension, minimal dimensional number, and uniformity dimension. Some
basic properties of this are recently established in [Fraser 2013].
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Other concepts of dimension: Minkowski

So once again:
dimA(E ) is the infimum of λ ≥ 0 s.t. E ∩B(w ,R) can (always) be covered
by at most C (r/R)−λ balls of radius 0 < r < R < diam(E )

dimA(E ) is the supremum of λ ≥ 0 s.t. (always) at least C (r/R)−λ balls
of radius 0 < r < R < diam(E ) are needed to cover E ∩ B(w ,R)

For comparison, recall the upper and lower Minkowski dimensions of a
compact E ⊂ X :

dimM(E ) is the infimum of λ ≥ 0 s.t. E can be covered
by at most Cr−λ balls of radius 0 < r < diam(E )

dimM(E ) is the supremum of λ ≥ 0 s.t. at least Cr−λ balls
of radius 0 < r < diam(E ) are needed to cover E .

Thus dimA(E ) ≤ dimM(E ) ≤ dimM(E ) ≤ dimA(E ).
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More examples (1)

General idea: Assouad dimensions reflect the ‘extreme’ behavior of sets
and take into account all scales 0 < r < d(E ).

If E = {0} ∪ [1, 2] ⊂ R, then dimA(E ) = 0 and dimA(E ) = 1
(dimM(E ) = dimM(E ) = 1).

dimA(Z) = 0 and dimA(Z) = 1.

If E = {(1/j , 0, . . . , 0) : j ∈ N} ∪ {(0, 0, . . . , 0)} ⊂ Rn, then then
dimA(E ) = 0 and dimA(E ) = 1 (dimM(E ) = dimM(E ) = 1/2).

0 1/4 1/3 1/2 1
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More examples (2)

If S ⊂ R2 is an unbounded, locally rectifiable von Koch snowflake
-type curve consisting of unit intervals, then dimA(S) = 1 and
dimA(E ) = log 4/ log 3 (flat on small scales, fractal on large scales)

If S ⊂ R2 consists of infinitely many copies of the usual (fractal) von
Koch snowflake curve, laid side by side, then dimA(S) = 1 and
dimA(E ) = log 4/ log 3 (fractal on small scales, flat on large scales).
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Other concepts of dimension: Hausdorff

Recall that the Hausdorff (r-)content of dimension λ, for E ⊂ X , is

Hλr (E ) = inf

{∑
k

rλk : E ⊂
⋃
k

B(xk , rk), xk ∈ E , 0 < rk ≤ r

}
.

The λ-Hausdorff measure of E is Hλ(E ) = limr→0Hλr (E ) and the
Hausdorff dimension of E is

dimH(A) = inf{λ ≥ 0 : Hλ(A) = 0}.
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Lower Assouad and Hausdorff

Lemma

If E ⊂ X is closed, then dimA(E ) ≤ dimH(E ∩ B) for all balls B centered
at E .

The proof is based on the fact (obtained by iteration), that for each
0 < t < dimA(E ) it holds that

Ht
R

(
E ∩ B(w ,R)

)
≥ cRt for all w ∈ E , 0 < r < R < diam(E ) (1)

(see e.g. [L. 2009] for details). Therefore in particular
dimH(E ∩ B(w ,R)) ≥ t and the claim follows.

In fact, for closed E ⊂ X we have dimA(E ) = sup{t ≥ 0 : (1) holds}.

(Note however that e.g. dimA(Q) = 1 but dimH(Q) = 0)
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Whitney covers

An open set Ω ( X can be covered with a countable collection W(Ω) of
closed balls Bi = B

(
xi ,

1
8 dist(xi ,X \ Ω)

)
, xi ∈ Ω, such that the overlap of

these balls is uniformly bounded (the factor 1
8 is not special).

For k ∈ Z and A ⊂ X we set
Wk(Ω; A) = {B(xi , ri ) ∈ W(Ω) : 2−k−1 < ri ≤ 2−k and A ∩ B(xi , ri ) 6= ∅}
and Wk(Ω) =Wk(Ω; X ).

In [Martio–Vuorinen 1987], the relation between upper Minkowski
dimension and upper bounds for Whitney cube count was considered for
compact E ⊂ Rn. In particular, if Hn(E ) = 0, then

dimM(E ) = inf{λ ≥ 0 : #Wk(Rn \ E ) ≤ C 2λk for all k ≥ k0}.

In [KLV] we established similar results for Assouad (and Minkowski)
dimensions in metric spaces.
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Assouad dimensions and Whitney ball count

A (blue) ball B(x , r), x ∈ E , in the cover of E intersects always at most a
fixed number of Whitney balls of Ω = X \ E with a comparable radius.

Conversely, each B(x , r), contains usually at least one Whitney ball of a
comparable radius. (The latter is not true in general but under some
geometric assumptions:)
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Geometric conditions

A metric space X is q-quasiconvex if there is q ≥ 1 such that for every
x , y ∈ X there is a curve γ : [0, 1]→ X so that x = γ(0), y = γ(1), and
length(γ) ≤ qd(x , y).

We say that a set E ⊂ X is (uniformly) ρ-porous (for 0 ≤ ρ ≤ 1), if for
every x ∈ E and all 0 < r < d(E ) there is y ∈ X such that
B(y , ρr) ⊂ B(x , r) \ E .

Under these conditions balls covering E always contain Whitney balls of
comparable radius.

The porosity assumption is more or less crucial in this context, but
quasiconvexity (as such) is not that essential; in particular, the existence of
rectifiable curves is not necessary. However, without any local connectivity
assumptions some generations Wk of Whitney balls might be empty.
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Assouad dimensions and Whitney covers

The relation between Assouad dimensions and Whitney covers (from
[KLV]) can be summarized as follows; here E ⊂ X is closed and
B0 = B(w ,R) with 0 < R < d(E ) and w ∈ E :

If dimA(E ) < λ, then #Wk(X \ E ; B0) ≤ C 2λkRλ

for all B0 and all k > − log2 R.

If we have for all B0 and all k ≥ − log2 R + `
#Wk(X \ E ; B0) ≥ c2λkRλ, then dimA(E ) ≥ λ.

If X is q-convex and E ⊂ X is porous, and dimA(E ) > λ, then
#Wk(X \ E ; B0) ≥ c2λkRλ for all B0 and all k > − log2 R + `.

If X is q-convex and E ⊂ X is porous, and for all B0 and all k ≥ − log2 R
#Wk(X \ E ; B0) ≤ C 2λkRλ, then dimA(E ) ≤ λ.

Thus Assouad dimensions (of porous sets E ⊂ X ) can be characterized in
terms of #Wk(X \ E ).
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Assouad dimensions and r -boundaries in Rn

Let us also mention the following Euclidean results from [KLV]; here
E ⊂ Rn is closed, Er = {x ∈ Rn : d(x ,E ) < r},
and B0 = B(w ,R) with 0 < R < d(E ) and w ∈ E .

dimA(E ) < λ
=⇒ Hn−1(∂Er ∩ B0) ≤ Crn−1(r/R)−λ for all B0 and 0 < r < R.

Hn−1(∂Er ∩ B0) ≥ crn−1(r/R)−λ for all B0 and 0 < r < δR
=⇒ dimA(E ) ≥ λ.

If E is porous, then dimA(E ) > λ
=⇒ Hn−1(∂Er ∩ B0) ≥ crn−1(r/R)−λ for all B0 and 0 < r < δR.

If Hn(E ) = 0 (weaker than porosity), then
Hn−1(∂Er ∩ B0) ≤ Crn−1(r/R)−λ for all B0 and 0 < r < R
=⇒ dimA(E ) ≤ λ.

Thus Assouad dimensions (of porous sets E ⊂ Rn) can be characterized in
terms of Hn−1(∂Er ).
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2. Metric measure spaces
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doubling measures I

A measure µ on X is doubling if there is C ≥ 1 so that
0 < µ(2B) ≤ Cµ(B) for all closed balls B ⊂ X .

Iterating, we find C > 0 and s > 0 s.t.

µ(B(y , r))

µ(B(x ,R))
≥ C

( r

R

)s
(2)

for all y ∈ B(x ,R) and 0 < r < R < d(X ). The infimum of s satisfying
(2) is called the upper regularity dimension of µ, dimreg(µ).

It is easy to see that dimA(X ) ≤ dimreg(µ) whenever µ is doubling on X .
In particular, if X has a doubling measure, then X is doubling.

On the other hand, if X is doubling and complete, then there is a doubling
measure µ on X [Luukkainen–Saksman 1998; Vol’berg–Konyagin 1987 (for
compact sets)].
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doubling measures II

Conversely, if X is uniformly perfect and µ is doubling then there are t > 0
and C ≥ 1 s.t.

µ(B(y , r))

µ(B(x ,R))
≤ C

( r

R

)t
(3)

whenever 0 < r < R < d(X ) and y ∈ B(x ,R). The supremum of t
satisfying (3) is called the lower regularity dimension of µ, dimreg(µ).

Thus dimreg(µ) > 0 if µ is doubling and X is uniformly perfect, and in fact
dimreg(µ) ≤ dimA(X ).

Measure µ (and the space X ) is called (Ahlfors) s-regular, if there is
C > 0 so that

1
C r s ≤ µ(B(x , r)) ≤ Cr s

for every x ∈ X and all 0 < r < d(X ). Then dimreg(µ) = dimreg(µ) = s.
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Dimensions via measures of neighborhoods

Let X = (X , µ, d) be a metric measure space and let E ⊂ X .

Instead covering E ∩ B(w ,R) with balls of radius 0 < r < R,

we may consider the measure µ(Er ∩ B(x ,R)), where
Er = {x ∈ X : d(x ,E ) < r} is the r -neighborhood of E .

This leads to the concepts of Assouad codimension.
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Assouad revisited

Let µ is doubling and E ⊂ X . In [KLV] we introduce the following
concepts:

The lower Assouad codimension co dimµ
A (E ) is the supremum of t ≥ 0 for

which there is C > 0 s.t.

µ(Er ∩ B(x ,R))

µ(B(x ,R))
≤ C

( r

R

)t
for every x ∈ E and all 0 < r < R < diam(E ).

The upper Assouad codimension co dim
µ
A (E ) is the infimum of s ≥ 0 for

which there is C > 0 s.t.

µ(Er ∩ B(x ,R))

µ(B(x ,R))
≥ C

( r

R

)s
for every x ∈ E and all 0 < r < R < diam(E ).
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Assouad vs. co-Assouad

Lemma (KLV)

If µ is a doubling measure on X and E ⊂ X , then

dimreg(µ) ≤ co dimµ
A (E ) + dimA(E ) ≤ dimreg(µ),

dimreg(µ) ≤ co dim
µ
A (E ) + dimA(E ) ≤ dimreg(µ).

(4)

In particular, if µ is s-regular, then the above lemma implies

dimA(E ) = s − co dimµ
A (E ),

dimA(E ) = s − co dim
µ
A (E )

for all E ⊂ X . The first equation was also proven in [LT]. On the other
hand, it is not hard to give examples where µ is doubling and any given
inequality in (4) is strict for a set E ⊂ X .
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Porosity and Assouad dimensions

Porous sets have upper bounds for their (upper) Assouad dimension in
regular spaces:

Proposition (KLV, strongly based on [JJKRRS 2010])

If X is s-regular, then there is a constant c > 0 such that
dimA(E ) ≤ s − cρs for all ρ-porous sets E ⊂ X .

If µ is (only) doubling, then it is still true that each %-porous set E ⊂ X
satisfies co dimµ

A (E ) ≥ t, where t > 0 only depends on % and the doubling
constant of µ (again observed in [KLV] but based on [JJKRRS 2010]).
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Aikawa

In [LT] it was shown that the lower Assouad codimension co dimµ
A (E ) (and

thus s − dimA(E ) in an s-regular space) can be characterized as the
supremum of q ≥ 0 for which there is C ≥ 1 s.t.

1

µ(B(x , r))

∫
B(x ,r)

dist(y ,E )−q dµ(y) ≤ Cr−q (5)

for every x ∈ E and all 0 < r < diam(E ). (We interpret the integral to be
+∞ if q > 0 and E has positive measure.)

A concept of dimension defined via integrals as in (5) was first used in
[Aikawa 1991] for subsets of Rn in connection to the so-called
quasiadditivity property of (Riesz) capacity.

(Thus in [LT] the lower Assouad codimension is actually called the Aikawa
codimension.)
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upper co-Assouad and co-Hausdorff

The Hausdorff content of codimension q for E ⊂ X can be defined as

Hµ,qR (E ) = inf

{∑
k

rad(Bk)−qµ(Bk) : E ⊂
⋃
k

Bk , rad(Bk) ≤ R

}
.

The Hausdorff codimension is co dimH(E ) = sup
{

q ≥ 0 : Hµ,qR (E ) = 0
}

.

It was recently established in [L] that if q > co dim
µ
A (E ), then there is

C > 0 s.t.
Hµ,qR

(
E ∩ B(w ,R)

)
≥ CR−qµ(B(w ,R)) (6)

for every w ∈ E and all 0 < R < diam(E ). (Recall that we had a similar
condition for 0 < t < dimA(E ) and Ht

R(E ).)

In fact, we have that co dim
µ
A (E ) = inf{q ≥ 0 : (6) holds}.

Let us remark here that the uniform estimate (6) for an exponent
1 < q < p (and for all 0 < R <∞) is equivalent to the set E being
uniformly p-fat (a capacity condition).
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3. Applications: Hardy inequalities
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Hardy inequalities

In an open set Ω ⊂ Rn the (p, β)-Hardy inequality, for 1 < p <∞ and
β ∈ R, reads as∫

Ω
|u(x)|p dΩ(x)β−p dx ≤ C

∫
Ω
|∇u(x)|p dΩ(x)β dx ,

where dΩ(x) = dist(x , ∂Ω).

If there exists a constant C > 0 such that this holds for all u ∈ C∞0 (Ω), we
say that Ω admits a (p, β)-Hardy inequality.

In a metric space X , with a doubling measure µ, smooth functions are
replaced with Lipschitz functions with compact support in Ω, and |∇u(x)|
is replaced with an upper gradient g of u:∫

Ω
|u(x)|p dΩ(x)β−p dµ ≤ C

∫
Ω

g(x)pdΩ(x)β dµ.
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Sufficient conditions I

We have the following recent result from [L]:

Theorem

Let 1 ≤ p <∞, β < p − 1, and assume that X is an unbounded doubling
metric space. If β ≤ 0, we further assume that X supports a p-Poincaré
inequality, and if β > 0 we assume that X supports a (p − β)-Poincaré
inequality. If Ω ⊂ X is an open set satisfying

co dimµ
A (X \ Ω) > p − β,

then Ω admits a (p, β)-Hardy inequality.

This has been previously known in Rn (with different terminology) in the
case β = 0 by [Aikawa 1991] and [Koskela–Zhong 2003], and for general β
under some additional geometric assumptions [L. 2008].
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Sufficient conditions II

Conversely, a combination of some previously known results (e.g. [L.
PAMS (to apper)]) based on Hausdorff content density / uniform fatness
and the link between these and the upper Assouad codimension gives the
following formulation:

Theorem

Let 1 ≤ p <∞, β < p − 1, and assume that X is a doubling metric space
which supports a p-Poincaré inequality if β ≤ 0, and a (p − β)-Poincaré
inequality if β > 0. Let Ω ⊂ X be an open set satisfying

co dim
µ
A (X \ Ω) < p − β ;

in case Ω is unbounded, we require in addition that X \Ω is unbounded as
well. Then Ω admits a (p, β)-Hardy inequality.
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Sufficient conditions in Rn

In the Euclidean case, we can reformulate the previous results as follows:

Corollary

Let 1 ≤ p <∞ and β < p − 1, and let Ω ⊂ Rn be an open set. If

dimA(Ωc) < n − p + β or dimA(Ωc) > n − p + β,

then Ω admits a (p, β)-Hardy inequality; in the latter case, if Ω is
unbounded, then we require that also Ωc is unbounded.

In [LS] we established an equivalence between p-Hardy inequalities (β = 0)
and the quasiadditivity of the variational p-capacity (in metric spaces).
This provides a link between the work of Aikawa (where essentially the
condition dim(Ωc) < n − p was used) and our recent considerations.
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Necessary conditions

The above sufficient conditions (i.e. co dimµ
A (Ωc) > p − β or

co dim
µ
A (Ωc) < p − β) are rather natural for (p, β)-Hardy inequalities. In

fact, the following necessary conditions hold as well:

Theorem (LT (β = 0), L)

Let 1 < p <∞ and β 6= p, and suppose that a domain Ω ⊂ X admits a
(p, β)-Hardy inequality. Then

co dimH(Ωc) < p − β or co dimµ
A (Ωc) > p − β.

Moreover, such a dichotomy also holds locally, i.e. for each ball B0 ⊂ X

co dimH(4B0 ∩ Ωc) < p − β or co dimµ
A (B0 ∩ Ωc) > p − β.
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A blast from the past

In my talk in the Finnish Mathematical Days 2010 I asked:
... samaa ideaa käyttäen saadaan Rn:ssä esimerkkejä, joissa [reunan osan
dimensio] µ ≥ n − 1. Tällöin paksu osa reunasta saadaan ’piiloon’ pienen
osan taakse, eikä (p, β)-Hardy päde millekään
β ≥ p − n + µ [vaikka siis olisi dimA(Ωc) = µ < n − p + β].

Toisaalta, jos pieni osa reunaa on µ-ulotteinen (0 ≤ µ < n) ja tämän osan
läheltä päästään λ-paksun reunan osan lähelle (µ < λ), pätee
(p, β)-Hardy, kun p − n + µ < β < p − n + λ.

Kysymys: Päteekö edellä (p, β)-Hardy kaikille

p − n + µ < β < p − n + λ ilman lisäehtoa, jos µ < n − 1 ?

Edellisten tulosten perusteella osaan nyt vastata:
KYLLÄ, kunhan β < p − 1
(ja jos λ = dimA(Ωc) > n − 1 niin ei välttämättä kun β ≥ p − 1.)
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