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University of Jyväskylä
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PART I:

Conditions for thickness
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Capacity

When Ω ⊂ Rn is a domain and E ⊂ Ω is a compact subset, the
(variational) p-capacity of E (relative to Ω) is

capp(E ,Ω) = inf

{∫
Ω
|∇u|p dx : u ∈ C∞0 (Ω), u ≥ 1 on E

}
.

Extention of capp(·,Ω) for arbitrary sets can be done via the standard
procedure (Choquet).

We say that capp(E ) = 0, if capp(E ′,Ω) = 0 for all compact E ′ ⊂ E and
all open Ω ⊃ E ′ .

Variational capacity was used by Gehring and Serrin in the early 1960’s,
and it has close connections to modulus of path families and potentials of
Riesz and Bessel. However, these will not be discussed in this talk.
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Hausdorff content and measure

The λ-dimensional Hausdorff δ-content of A ⊂ Rn is

Hλδ (A) = inf

{ ∞∑
i=1

rλi : A ⊂
∞⋃
i=1

B(zi , ri ), ri < δ

}
.

We may in addition assume that zi ∈ A.

The λ-dimensional Hausdorff measure is

Hλ(A) = lim
δ→0
Hλδ (A).

Note that for each 0 < δ ≤ ∞ we have Hλ∞(A) ≤ Hλδ (A) ≤ Hλ(A),
but still

Hλ∞(A) = 0 ⇐⇒ Hλ(A) = 0.
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Hausdorff dimension

The Hausdorff dimension of A is

dimH(A) = inf{λ > 0 : Hλ(A) = 0}
= inf{λ > 0 : Hλ∞(A) = 0}

For us, the following difference between measure and content is important:
If λ < dimH(A), then

Hλ(A) =∞ ( → useless )

but always
Hλ∞(A) ≤ diam(A)λ ( → useful )

( For λ = dimH(A) the measure Hλ(A) is usually better, though )
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Exceptional sets

The first interest to results concerning the relation between capacities and
Hausdorff measures/contents came from the attempts to understand small
(or exeptional) sets. Some references include Frostman (1935), Wallin
(1963/5), Reshetnyak (1969), Meyers (1970) and Havin–Maz’ya (1972).

The following basic result is well-known, see e.g. Adams–Hedberg or
Heinonen–Kilpeläinen–Martio:

Theorem

Let E ⊂ Rn.
(a) If capp(E ) = 0, then dimH(E ) ≤ n − p.
(b) If Hn−p(E ) <∞, then capp(E ) = 0.
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Thickness

We say that a (closed) set E ⊂ Rn is λ-thick at w ∈ E , if there exists
C > 0 so that

Hλ∞
(
E ∩ B(w , r)

)
≥ Crλ for all r > 0.

E is λ-thick, if it is λ-thick at every w ∈ E with the same constant.

Then actually
Hλ∞

(
E ∩ B(w , r)

)
≈ rλ

for every w ∈ E and all r > 0.
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Quantitative estimates

The basic theorem can be improved to give quantitative estimates, see for
instance Reshetnyak (1969), Martio (1978/79):

Theorem

Let E ⊂ Rn.
(a) If E is λ-thick at w ∈ E and λ > n − p, then

capp

(
E ∩ B(w , r),B(w , 2r)

)
≥ Crn−p

for all r > 0.
(b) If w ∈ E and

capp

(
E ∩ B(w , r),B(w , 2r)

)
≥ Crn−p

for all r > 0, then E is (n − p)-thick at w.

Notice the difference in (a) and (b).
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Metric spaces

For simplicity, we mainly consider Rn in this talk, but in fact most of the
considerations and results hold (with minor modifications) in a complete
metric measure space X = (X , d , µ), provided that

µ is doubling: µ(2B) ≤ Cdµ(B) for each ball B ⊂ X
(it follows from this that the ‘dimension’ of X is at most s = log2 Cd)

X supports a (weak) p-Poincaré inequality:∫
B
|u − uB | dµ ≤ CP r

(∫
τB

gp
u dµ

)1/p

whenever u ∈ L1
loc(X ) and gu is an (or a weak) upper gradient of u:

For all (or p-almost all) curves γ joining x , y ∈ X

|u(x)− u(y)| ≤
∫
γ

gu ds.
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Quantitative estimates in metric spaces

Quantitative estimates of the previous theorem were generalized to metric
spaces by Heinonen–Koskela (1998) and Costea (2009) (partially with
some additional conditions).

Similar estimates appear in the recent work Korte–L–Tuominen (preprint
2009), where instead of the usual Hausdorff content we consider the
following Hausdorff content of co-dimension q of a set E ⊂ X :

H̃q
R(E ) = inf

{∑
r−q
i µ

(
B(xi , ri )

)
: E ⊂

⋃
B(xi , ri ), ri ≤ R

}
.

Then
H̃q

r/2

(
E ∩ B(w , r)

)
≥ Cµ

(
B(w , r)

)
r−q for all r > 0 (1)

with some 1 ≤ q < p leads to the p-capacity estimate

capp

(
E ∩ B(w , r),B(w , 2r)

)
≥ Cr−pµ

(
B(w , r)

)
for all r > 0,

and conversely, the above p-capacity estimate gives (1) for p-co-content.
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Uniform fatness

A closed set E ⊂ Rn is uniformly p-fat if

capp

(
E ∩ B(x , r),B(x , 2r)

)
≥ C capp

(
B(x , r),B(x , 2r)

)
for every x ∈ E and all r > 0.
Actually, then

capp

(
E ∩ B(x , r),B(x , 2r)

)
≈ rn−p

for each x ∈ E and all r > 0.

Recall the famous Wiener criterion for the regularity of a boundary point
x0 ∈ ∂Ω for the Dirichlet problem for the p-Laplacian:∫ 1

0

(
capp

(
E ∩ B(x0, r),B(x0, 2r)

)
capp

(
B(x0, r),B(x0, 2r)

)1/(p−1) dr

r
=∞.

Uniform fatness is (of course) stronger than this and implies even Hölder
continuity up to the boundary for the solutions
(see Heinonen–Kilpeläinen–Martio).
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Uniform fatness: self-improvement

It is easy to see that if a set E ⊂ Rn is uniformly p-fat and q > p, then E
is also uniformly q-fat.

smaller p ↔ fatter set

On the other hand, we have a deep result by J. Lewis:

Theorem (Lewis 1988)

If E ⊂ Rn is uniformly p-fat for 1 < p <∞, then there exists some
1 < q < p such that E is uniformly q-fat.

Mikkonen (1996) proved this in weighted Rn and Björn, MacManus and
Shanmugalingam (2001) in metric spaces.
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Equivalence: Uniform fatness and thickness

Using this self-improvement and the previous quantitative estimates we
obtain for 1 < p <∞:

E ⊂ Rn is λ-thick for some λ > n − p

=⇒ E is uniformly p-fat

=⇒ E is uniformly q-fat for some 1 < q < p

=⇒ E is (n − q)-thick (and n − q > n − p).

This can be written as

Corollary

A closed set E ⊂ Rn is uniformly p-fat if and only if E is λ-thick for some
λ > n − p.
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Minkowski content

Let us define a Minkowski-type content of a compact set A ⊂ Rn: first set

Mλ
r (A) = inf

{
Nrλ : A ⊂

N⋃
i=1

B(zi , r)

}
(we may again assume zi ∈ A) and then define

Mλ
∞(A) = inf

r>0
Mλ

r (A).

Sidenote: the (lower) Minkowski dimension of A is

dimM(A) = inf{λ > 0 :Mλ
∞(A) = 0}.

Note that for each compact set A ⊂ Rn

Hλ∞(A) ≤Mλ
∞(A).
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From Minkowski to Hausdorff

Although Minkowski content can in general be much larger than Hausdorff
content, a uniform estimate for Mλ0

∞ yields a similar estimate for Hλ∞:

Lemma (L. AASFM 2009)

Let E ⊂ Rn be a closed set. Assume that there exist 0 < λ0 ≤ n and
C0 > 0 such that

Mλ0
∞
(
B(w , r) ∩ E

)
≥ C0 rλ0 for all w ∈ E , r > 0.

Then, for every 0 < λ < λ0, there exists a constant C > 0 such that

Hλ∞
(
B(w , r) ∩ E

)
≥ C rλ for all w ∈ E , r > 0.

Idea of the proof: Fix λ < λ0 and use the λ0-Minkowski estimate
repetedly to construct a Cantor type subset C ⊂ E , and then show that C
is indeed λ-thick.
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Equivalence: Minkowski content

As the direction Hλ∞ → Mλ
∞ is trivial, we have a further equivalent

condition for uniform fatness:

Corollary

Let 1 < p <∞. Then the following are equivalent for a closed set E ⊂ Rn:
(a) E is uniformly p-fat
(b) E is λ-thick for some λ > n − p, i.e.

Hλ∞
(
E ∩ B(w , r)

)
≥ rλ for all w ∈ E , r > 0.

(c) E satisfies a uniform Minkowski-content estimate for some λ > n − p:

Mλ
∞
(
E ∩ B(w , r)

)
≥ rλ for all w ∈ E , r > 0.
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PART II:

Thickness, fatness, and Hardy inequalities
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Hardy inequalities and uniform fatness

Let us now consider the following p-Hardy inequality in Rn:∫
Ω
|u(x)|p dΩ(x)−p dx ≤ C

∫
Ω
|∇u(x)|p dx , (2)

where Ω ⊂ Rn is open, u ∈ C∞0 (Ω), and dΩ(x) = dist(x , ∂Ω).

Theorem (Ancona 1986 (p = 2), Lewis 1988, Wannebo 1990)

Let Ω ⊂ Rn be a domain such that the complement Ωc = Rn \ Ω is
uniformly p-fat. Then Ω admits the p-Hardy inequality, that is, there exist
C > 0 so that (2) holds for all u ∈ C∞0 (Ω) with the same constant C .

However, uniform p-fatness of the complement is necessary for the
p-Hardy inequality in Rn only when p = n (Ancona n = 2, Lewis).

For instance, B(0, 1) \ {0} ⊂ Rn admits p-Hardy when 1 < p < n or
p > n, but the complement is uniformly p-fat only when p > n.

Juha Lehrbäck (University of Jyväskylä) Thickness Helsinki 01022010 19 / 54



Pointwise p-Hardy inequality

It is quite straight-forward to obtain the following stronger(?) pointwise
inequalities from uniform p-fatness of the complement:

Theorem (Haj lasz 1999, Kinnunen-Martio 1997)

Let 1 < p <∞ and assume that the complement of a domain Ω ⊂ Rn is
uniformly p-fat. Then there exists a constant C > 0 such that the
pointwise p-Hardy inequality

|u(x)| ≤ CdΩ(x)
(
M2dΩ(x)

(
|∇u|p

)
(x)
)1/p

holds for all u ∈ C∞0 (Ω) at every x ∈ Ω.

Here MR f is the usual restricted Hardy-Littlewood maximal function of
f ∈ L1

loc(Rn), defined by MR f (x) = supr≤R
1

|B(x ,r)|
∫
B(x ,r) |f (y)| dy
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Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy
inequality implies the usual p-Hardy inequality for all p > q:
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A boundary Poincaré inequality

In the proof of

Ωc uniformly p-fat ⇒ pointwise p-Hardy for Ω

the following Sobolev-type estimate due to Maz’ya plays a key role:
for u ∈ C∞(Rn)

1

|B|

∫
B
|u|p dx ≤ C

capp( 1
2 B ∩ {u = 0},B)

∫
B
|∇u|p dx . (3)

Now, if Ωc is uniformly p-fat and u ∈ C∞0 (Ω), it follows from (3) that∫
B
|u|p dx ≤ Crp

∫
B
|∇u|p dx

for each ball centered at ∂Ω (a “boundary Poincaré inequality”).

This, combined with standard estimates (or a chaining argument) for the
maximal functions yields the pointwise p-Hardy inequality.
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p-Hardy from p-fatness?

Pointwise Hardy inequalities show that the proof of

Ωc uniformly p-fat ⇒ p-Hardy for Ω

can not be completely trivial; indeed, a deep result (self-improvement of
p-fatness, Lewis) or clever integration tricks (Wannebo) are being used.

Recall:
uniform p-fatness of Ωc ⇒ pointwise p-Hardy for Ω
⇒ usual q-Hardy for all q > p.

How to obtain p-Hardy?

Use the self-improvement of p-fatness first.

But are there alternative (more ‘direct’) proofs?
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Equivalence: Pointwise Hardy and uniform fatness

In Korte–L–Tuominen (2009) we prove that if Ω admits the pointwise
p-Hardy inequality

|u(x)| ≤ CdΩ(x)
(
M2dΩ(x)

(
|∇u|p

)
(x)
)1/p

,

then the complement Ωc has to be uniformly p-fat, so we obtain an
equivalence between these two conditions.

(In particular, pointwise p-Hardy inequalities self-improve!)

This equivalence means that in a proof of
Ωc uniformly p-fat ⇒ Ω admits p-Hardy

we have to justify why we can “integrate the above maximal function
inequality with exponent 1” to obtain∫

Ω
|u(x)|p dΩ(x)−p dx ≤ C

∫
Ω
|∇u(x)|p dx .

Hence such a proof should not be ‘too easy’.
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From pointwise Hardy to fatness

How to prove [ pointwise p-Hardy ⇒ uniform p-fatness of Ωc ] ?
Main ideas:

Fix w ∈ ∂Ω, R > 0, let B = B(w ,R), and v ∈ C∞0 (2B) s.t.
0 ≤ v ≤ 1 and v ≥ 1 in B ∩ Ωc .

If
∫
Bv ≥ C , we are done by Poincaré:

1 ≤ C

∫
B

v ≤ CR
(∫

2B
|∇v |p

)1/p
⇒

∫
2B
|∇v |p ≥ CRn−p

Otherwise u = 1− v must have values ≥ C1 in a large set E ⊂ 1
4 B;

|E | ≥ C2|B|. Moreover, u = 0 on Ωc ∩ B.

⇒ we may use the pw p-Hardy on points x ∈ E ; let rx be the
corresponding “almost” best radii (0 < rx < 2dΩ(x) < R/2).

“5r”-covering thm. ⇒ we find xi ∈ E s.t. Bi = B(xi , ri ) are pairwise
disjoint but E ⊂

⋃
5Bi .
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Juha Lehrbäck (University of Jyväskylä) Thickness Helsinki 01022010 25 / 54



From pointwise Hardy to fatness...cont’d

Thus Rn ≤ C |E | ≤ C
∑

ri
n

On the other hand

Cp
1 ≤ |u(xi )|p ≤ CdΩ(xi )

pM2dΩ(x)|∇u|p(x) ≤ CRpri
−n

∫
Bi

|∇u|p

⇒ ri
n ≤ CRp

∫
Bi

|∇u|p

Combining the above inequalities with the facts that |∇u| = |∇v | in
B and Bi ’s are pairwise disjoint, we get

Rn ≤ CRp
∞∑
i=1

∫
Bi

|∇u|p ≤ CRp

∫
2B
|∇v |p

Hence capp(Ωc ∩ B, 2B) ≥ CRn−p, and so Ωc is unif. p-fat.
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Equivalence: boundary Poincaré

Since the validity of the boundary p-Poincaré inequality∫
B
|u|p dx ≤ Crp

∫
B
|∇u|p dx (4)

for all u ∈ C∞0 (Ω) and all balls centered at ∂Ω follows from the uniform
p-fatness of Ωc and implies the pointwise p-Hardy for Ω, we may conclude
that the validity of (4) is in fact equivalent with the other two
“p”-properties.

So once more we have a new characterization of thickness.

(And also (4) self-improves; recall here Keith–Zhong (2008))
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Uniformly perfect sets and Hardy inequalities

A set E ⊂ Rn is uniformly perfect, if #E ≥ 2 and there exists c ≥ 1 such
that for all x ∈ E , r > 0

E ∩ B(x , cr) \ B(x , r) 6= ∅

(if E \ B(x , cr) 6= ∅).

For unbounded sets, uniform perfecness is equivalent to uniform n-fatness
(Järvi–Vuorinen 1996, Sugawa 2003) and the n-Hardy inequality
Korte–Shanmugalingam 2009).

Hence, by the previous equivalence results we have:

E ⊂ Rn is uniformly perfect and unbounded
⇔ E is uniformly n-fat
⇔ E is λ-thick for some λ > 0
⇔ E is Minkowski λ-thick for some λ > 0
⇔ E c admits pointwise n-Hardy ⇔ E c admits n-Hardy ⇔ . . . . . .
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PART III:

Boundary conditions
and

weighted Hardy inequalities
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Pointwise Hardy implies inner boundary density

If a domain Ω ⊂ Rn admits the pointwise p-Hardy inequality, then it is
easy to see that the following inner boundary density condition for ∂Ω
holds for λ = n − p (L. PAMS 2008):

there exists a constant C > 0 so that

Hλ∞
(
B(x , 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω.

Idea: Let B(x , 2dΩ(x)) ∩ ∂Ω ⊂
⋃N

i=1 B(zi , ri ) and use the pointwise
p-Hardy for the test function

ϕ(y) = min
1≤i≤N

{
1, r−1

i d(y ,B(zi , ri ))
}
· χΩ(y) · (cut-off)
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Pointwise Hardy from inner boundary density

Conversely, if Ω ⊂ Rn and for some λ > n − p

Hλ∞
(
B(x , 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω, (5)

then Ω admits the pointwise p-Hardy inequality (L. PAMS 2008), (KLT
2009).

Using the self-improvement of pointwise Hardy inequalities, we have from
the previous results that

Ω ⊂ Rn admits pointwise p-Hardy
=⇒ Ω admits pointwise q-Hardy for some 1 ≤ q < p
=⇒ ∂Ω satifies (5) with λ = n − q > n − p
=⇒ Ω ⊂ Rn admits pointwise p-Hardy.

Question: Would it be possible obtain
Ω admits pointwise p-Hardy =⇒ (5) holds with some λ > n − p
directly? ( → new proof for self-improvement? )

Juha Lehrbäck (University of Jyväskylä) Thickness Helsinki 01022010 31 / 54



Inner boundary density and thickness

From the previous slide we obtain also the following interesting
characterization:
Ωc is uniformly p-fat ⇔ ∂Ω satisfies inner density condition with some
λ > n − p.

We have compared thickness conditions with uniform p-fatness
(↔ λ-thickness for λ > n − p)
and pointwise p-Hardy inequalities
(↔ inner λ-thickness of ∂Ω for λ > n − p)

But since 1 < p <∞, the relevant values of λ have been 0 ≤ λ ≤ n − 1.

However, (Hausdorff) thickness conditions make sense for each 0 ≤ λ ≤ n.
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Inner boundary density and thickness

Let us take another look at the λ-thickness conditions for 0 ≤ λ ≤ n:

(1) Hλ∞
(
B(w , r) ∩ ∂Ω

)
≥ Crλ for every r > 0, w ∈ ∂Ω

(2) Hλ∞
(
B(x , 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω

(3) Hλ∞
(
B(w , r) ∩ Ωc

)
≥ Crλ for every r > 0, w ∈ Ωc (∂Ω)

Then
(1)⇒ (2) (trivial) but (1) : (2) (cusp in n ≥ 3)

(2)⇒ (3) (L. PAMS 2008) but (2) : (3) (ball, λ > n − 1).

However, if we fix µ < n − 1, then
(2) with some λ > µ ⇐⇒ (3) with some λ > µ.
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Weighted Hardy inequalities

Let us now add a weight dΩ(x)β, β ∈ R, to the both sides of the p-Hardy
inequality ∫

Ω
|u(x)|p dΩ(x)

β

−p dx ≤ C

∫
Ω
|∇u(x)|p

dΩ(x)β

dx

This is the (p, β)-Hardy inequality for u ∈ C∞0 (Ω).
The following results hold for weighted Hardy inequalities:

Theorem (Nečas 1962)

Let Ω ⊂ Rn be a bounded Lipschitz domain. Then Ω admits the
(p, β)-Hardy inequality whenever 1 < p <∞ and β < p − 1 (sharp).

Theorem (Wannebo 1990)

Let Ω ⊂ Rn be a domain such that the complement Ωc = Rn \ Ω is
uniformly p-fat. Then there exists some β0 > 0 so that Ω admits the
(p, β)-Hardy inequality for all β < β0.
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Ball and snowflake

Consider domains B = B(0, 1) ⊂ R2 and
snowflake domain Ω ⊂ R2. Both B and Ω
have 2-thick complements, but ∂B satisfies
only inner 1-density condition whereas ∂Ω
satisfies inner density condition for
λ = log 4/ log 3.

p-Hardy inequalities do not ’see’ this difference, but weighted Hardy
inequalities do: For a fixed 1 < p <∞,
B admits (p, β)-Hardy iff β < p − 1 ( = p − n + (n − 1) ),
whereas Ω (should) admit (p, β)-Hardy iff β < p − 2 + λ.

This observation of P. Koskela was the starting point for all my research
on Hardy inequalities.
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Weighted pointwise Hardy inequalities

We also have the following pointwise version of the weighted (p, β)-Hardy
inequality:

|u(x)| ≤ CdΩ(x)1

−β
p

(
M2dΩ(x)

(
|∇u|q

dΩ

β
p

q

)
(x)
)1/q

, (6)

where we assume that 1 < q < p (self-improvement?).

We say that a domain Ω ⊂ Rn admits the pointwise (p, β)-Hardy
inequality if there exist some 1 < q < p and a constant C > 0 so that (6)
holds for all u ∈ C∞0 (Ω) at every x ∈ Ω with these q and C .

As in the unweighted case, the pointwise (p, β)-Hardy inequality implies
the usual weighted (p, β)-Hardy inequality.
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Accessibility

Theorem (Koskela-L. JLMS 2009)

Let 1 < p <∞ and let Ω ⊂ Rn be a domain. Assume that there exist
0 ≤ λ ≤ n, c ≥ 1, and C > 0 so that

Hλ∞
(
vx(c)–∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω. (7)

Then Ω admits the pointwise (p, β)-Hardy inequality whenever
β < p − n + λ.

A point w ∈ ∂Ω is in the set vx(c)–∂Ω, if w is accessible from x by a
c-John curve, that is, there exists a curve γ = γw ,x : [0, l ]→ Ω,
parametrized by arc length, with γ(0) = w , γ(l) = x , and satisfying
d(γ(t), ∂Ω) ≥ t/c for every t ∈ [0, l ].
(Thus (7) is a stronger version of the inner boundary density condition
introduced earlier)
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Examples

Here the boundary is λ-thick
(1 < λ < 2) and well
accessible
⇒ (p, β)-Hardy for all

β < p − n + λ︸ ︷︷ ︸
>p−1

Here the boundary is λ-thick
(1 < λ < 2), but above the
antenna in the middle the
accessible part of the boundary
is only 1-dimensional,
and indeed the (p, β)-Hardy
does not hold when

β = p − 1 < p − n + λ
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Removing accessibility

The accessibility part of the previous theorem can actually be dropped (at
least) whenever β ≤ 0:

Theorem (L. 2010)

Let 1 < p <∞, let Ω ⊂ Rn be a domain, and assume that the inner
boundary density condition holds with an exponent 0 ≤ λ ≤ n. Then, if
β ≤ 0 and β < p − n + λ, Ω admits the pointwise (p, β)-Hardy inequality.

This, together with a ‘shift’-property of usual Hardy inequalities (L. ACV
2008) leads to the following result:

Theorem (L. 2010)

Let 1 < p <∞, let Ω ⊂ Rn be a domain, and assume that the inner
boundary density condition holds with an exponent 0 ≤ λ ≤ n − 1. Then
Ω admits the (p, β)-Hardy inequality for all β < p − n + λ.
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In other words

We can rewrite the previous theorem as

Theorem (L. 2010)

Assume that Ωc is uniformly q-fat for all q > s ≥ 1. Then Ω admits the
(p, β)-Hardy inequality whenever 1 < p <∞ and β < p − s.

This is a nice generalization of both the Ancona–Lewis–Wannebo -theorem
and Nečas’ theorem.
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Conclusion and a gap

In conclusion, if 1 < p <∞, β ∈ R, and ∂Ω ⊂ Rn is inner λ-thick for
λ > n − p + β, then Ω admits

(p, β)-Hardy if β < p − 1 ;

pointwise (p, β)-Hardy if β ≤ 0 ;

pointwise (p, β)-Hardy if ∂Ω is in addition accessible.

On the other hand, inner λ-thickness for λ > n − p + β does not suffice
for (p, β)-Hardy if β ≥ p − 1.

Above we have a gap: Does λ-thickness for λ > n − p + β suffice for
pointwise (p, β)-Hardy if 0 < β < p − 1 ?
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Equivalence: weighted pointwise for β ≤ 0

Just like in the unweighted case, inner boundary fatness for some
λ > n− p + β is also necessary for the pointwise (p, β)-Hardy, (L. AASFM
2009). Thus, for β ≤ 0 we obtain yet another equivalent condition for
thickness (and uniform fatness):

For Ω ⊂ Rn, 1 < p <∞, and β ≤ 0,
∂Ω is inner λ-thick for some λ > n − p + β
⇔ Ω admits pointwise (p, β)-Hardy inequality.

Actually, for β < 0 we first obtain a Minkowski-type thickness condition for
the boundary, which then yields a similar condition for Hausdorff-content.
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What is necessary for Hardy?

If the complement of Ω contains a part of dimension µ, then Ω can not
admit the (p, p − n + µ)-Hardy.
(Koskela–Zhong 2003, β = 0 i.e. p = n − µ), (L. MM 2008)

More precisely:

Theorem

Let 1 < p <∞, β 6= p, and assume that a domain Ω ⊂ Rn admits the
(p, β)-Hardy inequality. Then for a given ball B ⊂ Rn either

dimH(4B ∩ Ωc) > n − p + β

or
dimA(B ∩ Ωc) < n − p + β.

Here dimA is a concept of dimension, introduced by Aikawa, s.t.
dimH(E ) ≤ dimA(E ) for all E ⊂ Rn.
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Aikawa–Assouad

When E ⊂ Rn is a closed set with an empty interior, we let G (E ) denote
the set of s > 0 for which there exists Cs > 0 s.t.∫

B(x ,r)
d(y ,E )s−n dy ≤ Csr s

for every x ∈ E and all r > 0.

Then dimA(E ) = inf G (E ).
The above condition can also be expressed as a uniform cube-counting
condition for Whitney cubes of E c .

We then have dimH(E ) ≤ dimA(E ) ≤ n, but if E is sufficiently regular,
e.g. a compact submanifold of Rn or a nice self-similar fractal, then
dimH(E ) = dimA(E ).

It has recently turned out that dimA agrees with the Assouad dimension.

Juha Lehrbäck (University of Jyväskylä) Thickness Helsinki 01022010 44 / 54



Thick and thin

If Ωc (or ∂Ω) contains a part E with dimA(E ) = µ, then
(p, p − n + µ)-Hardy fails.

If ∂Ω contains in addition an inner λ-thick part, where λ > µ, the
(p, β)-Hardy may hold for some β > p − n + µ
(L. MM 2008).

Then, for exponents β > p − n + µ, the µ-dimensional boundary parts are
’too small’ and we may neglect them, if the λ-thick part is visible.
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Thick and thin: an example

Here Ω ⊂ R2 admits (p, β)-Hardy
when
β < p − 1

or
p − 1 < β < p − 2 + λ,

where λ > 1 is the dimension of
the snowflake curve.

β = p − 1 = p − 2 + 1 is not possible since the boundary contains a
1-dimensional part.

Exponents p − 1 < β < p − 2 + λ are ok;
1-dimensional parts are too small, and the thick part is visible.
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Thickness is not enough

Existence of a thick boundary part
is not sufficient: Let us add small
’rooms’ on top of the previous Ω,
and make the ’doors’ smaller and
smaller compared to the rooms.

Then the (p, β)-Hardy does not
hold for any β ≥ p − 1.

(without the rooms the inequality did hold for p − 1 < β < p − 2 + λ.)

The thick part is not visible!
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Counterexamplefunctions

Let us show that the (p, β)-Hardy fails in Ω when β > p − 1.

Let the length of the j :th room be 2−j and the width of the door be 2−sj ,
where s > 1. Define functions uj : Ω→ R as in the figure.

= 1u j

2
sj

ju =

2
−j

2
−sj
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Calculation

Then ∫
|uj |pdβ−p

Ω & 2−2j2−j(β−p) = 2−j(2−p+β)

and ∫
|∇uj |pdβΩ . 2−sj2−j2sjp2−jsβ = 2−js(1−p+β),

and so∫
|uj |pdΩ

β−p∫
|∇uj |pdΩ

β
&

2−j(2−p+β)

2−js(1−p+β)2−j
= 2−j(1−p+β)(1−s) j→∞−−−→∞,

as (1− p + β)(1− s) < 0, when s > 1 and β > p − 1.

Thus the (p, β)-Hardy inequality fails, and we stop here.
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