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1. Introduction: Hardy inequalities
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The original p-Hardy inequality

G.H. Hardy published in 1925 the inequality:∫ ∞
0

(
1

x

∫ x

0
f (t) dt

)p

dx ≤
(

p

p − 1

)p ∫ ∞
0

f (x)p dx ,

where 1 < p <∞ and f ≥ 0 is measurable.

Taking u(x) =
∫ x

0 f (t) dt, the above p-Hardy inequality can be written as∫ ∞
0

|u(x)|p

xp
dx ≤

(
p

p − 1

)p ∫ ∞
0
|u′(x)|p dx ,

where 1 < p <∞ and u is absolutely continuous with u(0) = 0.
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Hardy inequalities in Rn

The 1-dimensional p-Hardy inequality∫ ∞
0

|u(x)|p

xp
dx ≤

(
p

p − 1

)p ∫ ∞
0
|u′(x)|p dx

can be generalized to higher dimensions in many ways; we consider the
following: ∫

Ω

|u(x)|p

dΩ(x)p
dx ≤ C

∫
Ω
|∇u(x)|p dx ,

where Ω ⊂ Rn is open, u ∈ C∞0 (Ω), and dΩ(x) = dist(x , ∂Ω).
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The p-Hardy inequality is not always valid

If the p-Hardy inequality∫
Ω

|u(x)|p

dΩ(x)p
dx ≤ C

∫
Ω
|∇u(x)|p dx

holds for all u ∈ C∞0 (Ω) with a constant C > 0, we say that the domain
Ω ⊂ Rn admits the p-Hardy inequality.
(In this talk, we are not interested in the optimality of the constant C )

Not all domains admit a p-Hardy inequality. For instance, it is easy to
calculate that Ω = B(0, 1) \ {0} ⊂ Rn does not admit the n-Hardy
inequality.

(For 1 < p < n and p > n this domain actually admits the
p-Hardy inequality.)

Our main interest is in finding (e.g. geometric) conditions which guarantee
the validity of the p-Hardy inequality on a domain Ω.
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Metric spaces

For simplicity, we mainly consider Rn in this talk, but in fact most of the
considerations and results hold (with minor modifications) in a complete
metric measure space X = (X , d , µ), provided that

µ is doubling: µ(2B) ≤ Cdµ(B) for each ball B ⊂ X
(it follows from this that the ‘dimension’ of X is at most s = log2 Cd)
X supports a (weak) (1, p)-Poincaré inequality:∫

B
|u − uB | dµ ≤ CP r

(∫
λB

gp
u dµ

)1/p

whenever u ∈ L1
loc(X ) and gu is an (or a weak) upper gradient of u:

For all (or p-almost all) curves γ joining x , y ∈ X we have
|u(x)− u(y)| ≤

∫
γ gu ds .

We use here and in the following the notation

uB =

∫
B

u dµ = µ(B)−1
∫
B

u dµ.
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Sufficient conditions for Hardy inequalities

Theorem (Nečas 1962)

Let 1 < p <∞ and assume that Ω ⊂ Rn is a bounded Lipschitz domain.
Then Ω admits the p-Hardy inequality∫

Ω

|u(x)|p

dΩ(x)p
dx ≤ C

∫
Ω
|∇u(x)|p dx .

The “smoothness” of the boundary is not relevant:

Theorem (Ancona 1986 (p = 2), Lewis 1988, Wannebo 1990)

Let Ω ⊂ Rn be a domain such that the complement Ωc = Rn \ Ω is
uniformly p-fat. Then Ω admits the p-Hardy inequality.

For instance, if Ω ⊂ Rn is bounded Lipschitz, then Ωc is uniformly p-fat
for all 1 < p <∞.
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Capacity and fatness

When Ω ⊂ Rn is a domain and E ⊂ Ω is a compact subset, the
(variational) p-capacity of E (relative to Ω) is

capp(E ,Ω) = inf

{∫
Ω
|∇u|p dx : u ∈ C∞0 (Ω), u ≥ 1 on E

}
.

A closed set E ⊂ Rn is uniformly p-fat if

capp

(
E ∩ B(x , r),B(x , 2r)

)
≥ C capp

(
B(x , r),B(x , 2r)

)
for every x ∈ E and all r > 0.
Actually, then

capp

(
E ∩ B(x , r),B(x , 2r)

)
≈ rn−p

for each x ∈ E and all r > 0.
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Uniform fatness: self-improvement

It is easy to see that if a set E ⊂ Rn is uniformly p-fat and q > p, then E
is also uniformly q-fat.

smaller p ↔ fatter set

On the other hand, we have a deep result by J. Lewis:

Theorem (Lewis 1988)

If E ⊂ Rn is uniformly p-fat for 1 < p <∞, then there exists some
1 < q < p such that E is uniformly q-fat.

(Björn, MacManus and Shanmugalingam (2001) proved the same in
metric spaces.)
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2. Pointwise Hardy inequalities
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Hardy inequalities and uniform fatness

Recall the p-Hardy inequality∫
Ω

|u(x)|p

dΩ(x)p
dx ≤ C

∫
Ω
|∇u(x)|p dx ,

where Ω ⊂ Rn is open, u ∈ C∞0 (Ω), and dΩ(x) = dist(x , ∂Ω);

and the ‘fundamental’ theorem:

Theorem (Ancona 1986 (p = 2), Lewis 1988, Wannebo 1990)

Let Ω ⊂ Rn be a domain such that the complement Ωc = Rn \ Ω is
uniformly p-fat. Then Ω admits the p-Hardy inequality.

However, uniform p-fatness of the complement is necessary for the
p-Hardy inequality in Rn only when p = n (Ancona n = 2, Lewis).

For instance, B(0, 1) \ {0} ⊂ Rn admits p-Hardy when 1 < p < n or
p > n, but the complement is uniformly p-fat only for p > n.
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Pointwise p-Hardy inequality

It is quite straight-forward to obtain the following stronger(?) pointwise
inequalities from uniform p-fatness of the complement:

Theorem (Haj lasz 1999, Kinnunen-Martio 1997)

Let 1 < p <∞ and assume that Ωc is uniformly p-fat. Then there exists a
constant C > 0 such that the pointwise p-Hardy inequality

|u(x)| ≤ CdΩ(x)
(
M2dΩ(x)

(
|∇u|p

)
(x)
)1/p

holds for all u ∈ C∞0 (Ω) at every x ∈ Ω.

Here MR f is the usual restricted Hardy-Littlewood maximal function of
f ∈ L1

loc(Rn), defined as MR f (x) = supr≤R
∫
B(x ,r)|f (y)| dy .
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Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise p-Hardy
inequality implies the usual p′-Hardy inequality for all p′ > p:
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M2dΩ(x)
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|∇u|p
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Juha Lehrbäck (University of Jyväskylä) Hardy inequalities UK Feb 2013 14 / 41



Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise p-Hardy
inequality implies the usual p′-Hardy inequality for all p′ > p:

∫
Ω

|u(x)|p′dΩ(x)−p
′

dx

≤ C

∫
Ω

(
M2dΩ(x)

(
|∇u|p

)
(x)
)p′/p

dx

≤ C

∫
Ω

(
|∇u|p

)p′/p
dx
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A boundary Poincaré inequality

In the proof of
[

Ωc uniformly p-fat ⇒ pointwise p-Hardy for Ω
]

the following Sobolev-type estimate due to Maz’ya plays a key role:
for u ∈ C∞(Rn)∫

B
|u|p dx ≤ C

capp( 1
2 B ∩ {u = 0},B)

∫
B
|∇u|p dx . (1)

Now, if Ωc is uniformly p-fat and u ∈ C∞0 (Ω), it follows from Hölder’s
inequality and (1) that the following ‘boundary Poincaré inequality’

|uB | ≤
(∫

B
|u|p

)1/p

≤ C

(
rp−n

∫
B
|∇u|p

)1/p

= Cr

(∫
B
|∇u|p

)1/p

holds for each ball B = B(w , r) with w ∈ ∂Ω.
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Proof of the pointwise inequality:

The previous estimate, standard estimates (or a chaining argument) for
the maximal function, and the usual Poincaré inequality now yield the
pointwise p-Hardy inequality:
Let x ∈ Ω, pick w ∈ ∂Ω such that d(x ,w) = dΩ(x), and write
Bx = B(x , dΩ(x)), Bw = B(w , dΩ(x)) ⊂ 2Bx . Then

|u(x)| ≤ |u(x)− uBx |+ |uBx − uBw |+ |uBw |

. dΩ(x)
(
MdΩ(x)|∇u|p

)1/p
+ dΩ(x)

(∫
2Bx

|∇u|p
)1/p

+ dΩ(x)

(∫
Bw

|∇u|p
)1/p

. 3dΩ(x)
(

M2dΩ(x)|∇u|p(x)
)1/p
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Revision and a question:

So, we have just proven:

Ωc uniformly p-fat

⇒ Ωc uniformly q-fat, q < p (Lewis)

⇒ Ω admits the pointwise p-Hardy
⇒ Ω admits the usual p′-Hardy for all p′ > p.

But how to obtain the p-Hardy from the uniform p-fatness of Ωc?

Use the self-improvement of p-fatness first (this is a deep result and
requires some sophisticated tools).

Are there alternative (more ‘direct’) proofs for this?

Wannebo uses an inequality similar to the ‘boundary Poincaré inequality’
and a clever integration trick (this is not trivial, but still ‘elementary’).

But can we prove that the pointwise p-Hardy inequality implies the usual
p-Hardy inequality?
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Equivalence: Pointwise Hardy and uniform fatness

With Riikka Korte and Heli Tuominen (Math. Ann, 2011) we show that if
Ω admits the pointwise p-Hardy inequality

|u(x)| ≤ CdΩ(x)
(
M2dΩ(x)

(
|∇u|p

)
(x)
)1/p

,

then the complement Ωc has to be uniformly p-fat, and so we have an
equivalence between these two conditions.

(In particular, pointwise p-Hardy inequalities self-improve!)

This equivalence means that in a proof of
Ωc uniformly p-fat ⇒ Ω admits p-Hardy

we have to justify the “integration of the pointwise maximal function
inequality with exponent 1” to obtain∫

Ω
|u(x)|p dΩ(x)−p dx ≤ C

∫
Ω
|∇u(x)|p dx .

Hence such a proof should not be ‘too easy’.
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From pointwise Hardy to fatness

So how to prove [ pointwise p-Hardy ⇒ uniform p-fatness of Ωc ] ?
Main ideas:

Fix w ∈ ∂Ω, R > 0, let B = B(w ,R) and v ∈ C∞0 (2B) be a capacity
test function for Ωc ∩ B, i.e. 0 ≤ v ≤ 1 and v = 1 in Ωc ∩ B.

If
∫
Bv ≥ c (where 0 < c < 1 is a fixed small number), we are done by

Poincaré (for v ∈ C∞0 (2B)):

c ≤
∫
B

v ≤ R
(∫

2B
|∇v |p

)1/p
⇒

∫
2B
|∇v |p ≥ CRn−p

Otherwise u = 1− v must have values ≥ C1 = C1(c) in a large set
E ⊂ 1

4 B; |E | ≥ C2|B|. Moreover, u = 0 on Ωc ∩ B.

We may use the pointwise p-Hardy on points x ∈ E ; let rx be the
corresponding (almost) best radii (0 < rx < 2dΩ(x) < R/2).

By the 5r -covering lemma we find xi ∈ E s.t. Bi = B(xi , ri ) are
pairwise disjoint but E ⊂

⋃
5Bi .
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From pointwise Hardy to fatness...cont’d

Thus Rn ≤ C |E | ≤ C
∑

ri
n

On the other hand

Cp
1 ≤ |u(xi )|p ≤ CdΩ(xi )

pM2dΩ(x)|∇u|p(x) ≤ CRpri
−n
∫
Bi

|∇u|p

⇒ ri
n ≤ CRp

∫
Bi

|∇u|p

Combining the above inequalities with the facts that |∇u| = |∇v | in
B and that Bi ’s are pairwise disjoint, we get

Rn ≤ CRp
∞∑
i=1

∫
Bi

|∇u|p ≤ CRp

∫
2B
|∇v |p

Hence capp(Ωc ∩ B, 2B) ≥ CRn−p, and so Ωc is uniformly p-fat.
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Conclusion

We thus have for 1 < p <∞ and Ω ⊂ Rn that
Ωc uniformly p-fat ⇐⇒ Ω admits pointwise p-Hardy,

and the proof is based on the use of ‘elementary tools’; more precisely,
sophisticated machinery from potential theory is not needed.

By Wannebo’s integration trick,
Ωc uniformly p-fat =⇒ Ω admits usual p-Hardy,

and so we have an ‘elementary’ proof for the fact that
Ω admits pointwise p-Hardy =⇒ Ω admits usual p-Hardy.
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3. Weighted Hardy inequalities and boundary conditions
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Weighted Hardy inequalities

Let us add a weight dΩ(x)β, β ∈ R, to the both sides of the p-Hardy
inequality ∫

Ω
|u(x)|p dΩ(x)

β

−p dx ≤ C

∫
Ω
|∇u(x)|p

dΩ(x)β

dx

This is the (weighted) (p, β)-Hardy inequality for u ∈ C∞0 (Ω).
The following have been known for weighted Hardy inequalities:

Theorem (Nečas 1962)

Let Ω ⊂ Rn be a bounded Lipschitz domain. Then Ω admits the
(p, β)-Hardy inequality whenever 1 < p <∞ and β < p − 1 (sharp).

Theorem (Wannebo 1990)

Assume that Ωc is uniformly p-fat. Then there exists some β0 > 0 so that
Ω admits the (p, β)-Hardy inequality for all β < β0.
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Juha Lehrbäck (University of Jyväskylä) Hardy inequalities UK Feb 2013 23 / 41



Weighted Hardy inequalities

Let us add a weight dΩ(x)β, β ∈ R, to the both sides of the p-Hardy
inequality ∫

Ω
|u(x)|p dΩ(x)β−p dx ≤ C

∫
Ω
|∇u(x)|pdΩ(x)β dx

This is the (weighted) (p, β)-Hardy inequality for u ∈ C∞0 (Ω).
The following have been known for weighted Hardy inequalities:

Theorem (Nečas 1962)
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A precise statement under uniform fatness

We have the following recent result:

Theorem (L. PAMS, to appear)

Assume that Ωc is uniformly q-fat for all q > s ≥ 1. Then Ω admits the
(p, β)-Hardy inequality whenever 1 < p <∞ and β < p − s.

For instance, if Ω ⊂ R2 is simply connected, then Ω admits the
(p, β)-Hardy whenever β < p − 1.

The idea of the proof is quite simple: By the assumption, Ωc is uniformly
(p − β)-fat, and so Ω admits the (p − β)-Hardy inequality. Assume β > 0.
Then, given u ∈ C∞0 (Ω), we can use the (p − β)-Hardy inequality for the
test function v = |u|β/(p−β), and the (p, β)-inequality for u follows with a
simple calculation using Hölder’s inequality.

For β < 0, the claim follows from weighted pointwise Hardy inequalities
(see below).
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Hausdorff content and thickness

With the help of Hausdorff contents, even more can be said about
weighted Hardy inequalities.

Recall that the λ-dimensional Hausdorff δ-content of A ⊂ Rn is

Hλδ (A) = inf

{ ∞∑
i=1

rλi : A ⊂
∞⋃
i=1

B(zi , ri ), ri < δ

}
.

(We may in addition assume that zi ∈ A.)

We say that a (closed) set E ⊂ Rn is λ-thick, if there exists C > 0 so that

Hλ∞
(
E ∩ B(w , r)

)
≥ Crλ for all r > 0, w ∈ E .

It is known that
E is uniformly p-fat =⇒ E is (n − p)-thick

and
E is λ-thick, λ > n − p =⇒ E is uniformly p-fat.
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Equivalence: Uniform fatness and thickness

Thus, using the self-improvement of uniform fatness, we obtain for
1 < p <∞:

E ⊂ Rn is λ-thick for some λ > n − p

=⇒ E is uniformly p-fat
=⇒ E is uniformly q-fat for some 1 < q < p
=⇒ E is (n − q)-thick (and n − q > n − p).

This can be written as

Corollary

A closed set E ⊂ Rn is uniformly p-fat if and only if E is λ-thick for some
λ > n − p.

(Actually, even more is true: the above conditions are equivalent to a
uniform thickness condition for the λ-dimensional Minkowski content, with
λ > n − p.)
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Ball and snowflake

Consider domains B = B(0, 1) ⊂ R2 and a
’snowflake’ domain Ω ⊂ R2. Both B and Ω
have 2-thick complements, but ∂B is only
1-thick, whereas ∂Ω is thick up to
λ = log 4/ log 3.

p-Hardy inequalities do not ’see’ this difference, but weighted Hardy
inequalities do: For a fixed 1 < p <∞,
B admits (p, β)-Hardy iff β < p − 1 ( = p − n + (n − 1) ),
whereas Ω (should) admit (p, β)-Hardy iff β < p − 2 + λ.

This observation by P. Koskela was the starting point for all my research
on Hardy inequalities.
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Inner density

We say that a domain Ω ⊂ Rn satisfies inner boundary density condition
for 0 ≤ λ ≤ n if there exists a constant C > 0 so that

Hλ∞
(
∂Ω ∩ B(x , 2dΩ(x))

)
≥ CdΩ(x)λ for every x ∈ Ω.

We have the following characterization:

Theorem (L. PAMS 2008)

Let Ω ⊂ Rn be a domain and let 1 < p <∞. Then Ωc is uniformly p-fat
if and only if ∂Ω satisfies inner boundary density for some λ > n − p.

Note that since 1 < p <∞, the relevant values of λ are 0 ≤ λ ≤ n − 1.
Thus, for these λ, inner boundary density is equivalent to the λ-thickness
of the complement.
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Weighted pointwise Hardy inequalities

We also have the following pointwise version of the weighted (p, β)-Hardy
inequality:

|u(x)| ≤ CdΩ(x)1

−β
p

(
M2dΩ(x)

(
|∇u|q

dΩ

β
p
q

)
(x)
)1/q

, (2)

where we assume that 1 < q < p (self-improvement?).

We say that a domain Ω ⊂ Rn admits the pointwise (p, β)-Hardy
inequality if there exist some 1 < q < p and a constant C > 0 so that (2)
holds for all u ∈ C∞0 (Ω) at every x ∈ Ω with these q and C .

As in the unweighted case, the pointwise (p, β)-Hardy inequality implies
the usual weighted (p, β)-Hardy inequality (thanks to the built-in
’self-improvement’).
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Accessibility

Theorem (Koskela-L. JLMS, 2009)

Let 1 < p <∞ and let Ω ⊂ Rn be a domain. Assume that there exist
0 ≤ λ ≤ n, c ≥ 1, and C > 0 so that

Hλ∞
(
∂vis
x ,cΩ

)
≥ CdΩ(x)λ for every x ∈ Ω. (3)

Then Ω admits the pointwise (p, β)-Hardy inequality whenever
β < p − n + λ.

A point w ∈ ∂Ω is in the set ∂vis
x ,cΩ, if w is accessible from x by a c-John

curve, that is, there exists a curve γ = γw ,x : [0, l ]→ Ω, parametrized by
arc length, with γ(0) = w , γ(l) = x , and satisfying d(γ(t), ∂Ω) ≥ t/c for
every t ∈ [0, l ].
(Thus (3) is a stronger version of the inner boundary density condition
introduced earlier)
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Examples

Here the boundary is λ-thick
(1 < λ < 2) and well
accessible
⇒ (p, β)-Hardy for all

β < p − 2 + λ︸ ︷︷ ︸
>p−1

Here the boundary is λ-thick
(1 < λ < 2), but above the
antenna in the middle the
accessible part of the boundary
is only 1-dimensional,
and indeed the (p, β)-Hardy
does not hold when

β = p − 1 < p − 2 + λ
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Removing accessibility

The accessibility part of the previous theorem can be dropped for β ≤ 0:

Theorem (L. PAMS, to appear)

Let 1 < p <∞, let Ω ⊂ Rn be a domain, and assume that the inner
boundary density condition holds with an exponent 0 ≤ λ ≤ n. Then, if
β ≤ 0 and β < p − n + λ, Ω admits the pointwise (p, β)-Hardy inequality.

This, together with a ‘shift’-property of usual Hardy inequalities (L. ACV
2008) leads to the following result:

Theorem (L. PAMS, to appear)

Let 1 < p <∞, let Ω ⊂ Rn be a domain, and assume that the inner
boundary density condition holds with an exponent 0 ≤ λ ≤ n − 1. Then
Ω admits the (p, β)-Hardy inequality for all β < p − n + λ.

(Note that here β < p − 1.)
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Conclusion and a gap

In conclusion, if 1 < p <∞, β ∈ R, and ∂Ω ⊂ Rn is inner λ-thick for
λ > n − p + β, then Ω admits

(p, β)-Hardy if β < p − 1 ;

pointwise (p, β)-Hardy if β ≤ 0 ;

pointwise (p, β)-Hardy if ∂Ω is in addition accessible.

On the other hand, inner λ-thickness for λ > n − p + β does not suffice
for (p, β)-Hardy if β ≥ p − 1 (by the ‘antenna’ example).

Thus one gap remains: Does inner λ-thickness for λ > n − p + β suffice
for pointwise (p, β)-Hardy if 0 < β < p − 1 ?

This I do not know (at the moment).
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pointwise (p, β)-Hardy if ∂Ω is in addition accessible.

On the other hand, inner λ-thickness for λ > n − p + β does not suffice
for (p, β)-Hardy if β ≥ p − 1 (by the ‘antenna’ example).

Thus one gap remains: Does inner λ-thickness for λ > n − p + β suffice
for pointwise (p, β)-Hardy if 0 < β < p − 1 ?

This I do not know (at the moment).
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4. A bit more on thickness conditions
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Minkowski content

Let us define a Minkowski-type content of a compact set A ⊂ Rn: first set

Mλ
r (A) = inf

{
Nrλ : A ⊂

N⋃
i=1

B(zi , r)

}
(we may again assume zi ∈ A) and then define

Mλ
∞(A) = inf

r>0
Mλ

r (A).

Sidenote: the (lower) Minkowski dimension of A is

dimM(A) = inf{λ > 0 :Mλ
∞(A) = 0}.

Note that for each compact set A ⊂ Rn

Hλ∞(A) ≤Mλ
∞(A).
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From Minkowski to Hausdorff

The Minkowski content can in general be much larger than the Hausdorff
content, but a uniform estimate for Mλ

∞ yields a similar estimate for Hλ′∞:

Lemma (L. AASFM, 2009)

Let E ⊂ Rn be a closed set. Assume that there exist 0 < λ ≤ n and
C0 > 0 such that

Mλ
∞
(
B(w , r) ∩ E

)
≥ C0 rλ for all w ∈ E , r > 0.

Then, for every 0 < λ′ < λ, there exists a constant C = Cλ′ > 0 such that

Hλ′∞
(
B(w , r) ∩ E

)
≥ C rλ

′
for all w ∈ E , r > 0.

Idea of the proof: Fix λ′ < λ and use the λ-Minkowski estimate repeatedly
to construct a Cantor type subset C ⊂ E , and then show that C is indeed
λ′-thick.

Juha Lehrbäck (University of Jyväskylä) Hardy inequalities UK Feb 2013 36 / 41



Equivalence: Minkowski content

It is trivial that Hλ∞(E ) ≤Mλ
∞(E ), and so we have a further

characterization for uniform fatness:

Corollary

Let 1 < p <∞. Then the following are equivalent for a closed set E ⊂ Rn:
(a) E is uniformly p-fat
(b) E is λ-thick for some λ > n − p, i.e.

Hλ∞
(
E ∩ B(w , r)

)
≥ Crλ for all w ∈ E , r > 0.

(c) E satisfies a uniform Minkowski content estimate for some λ > n − p:

Mλ
∞
(
E ∩ B(w , r)

)
≥ Crλ for all w ∈ E , r > 0.

(Note that λ in (b) and (c) may be different.)
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One last thing

The condition Mλ
∞
(
E ∩ B(w ,R)

)
≥ CRλ for all w ∈ E ,

0 < R < diam(E ), is equivalent to the condition:
(LA) for all 0 < r < R < diam(E ), w ∈ E , at least C (r/R)−λ balls of
radius r are needed to cover E ∩ B(w ,R).

This is in a sense ‘dual’ to the following condition:
(UA) for all 0 < r < R < diam(E ), w ∈ E , at most C (r/R)−λ balls of
radius r are needed to cover E ∩ B(w ,R).

The infimum of all λ > 0 satisfying (UA) is the

upper

Assouad dimension
of E ,

dimA(E ).

The supremum of all λ > 0 satisfying (LA) is called the lower Assouad
dimension of E , dimA(E ), in [Käenmaki-L.-Vuorinen, Indiana UMJ (to
appear)].

Thus, if E ⊂ Rn is unbounded and dimA(E ) ≤ n − 1, we have that
dimA(E ) = n − inf

{
p > 1 : E is uniformly p-fat

}
.
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