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Abstract. It is a well-known fact that in a Lipschitz domain Ω ⊂ Rn
a p-Hardy inequality, with weight dist(x, ∂Ω)β , holds for all u ∈ C∞0 (Ω)
whenever β < p − 1. We show that actually the same is true under
the sole assumption that the boundary of the domain satisfies a uniform
density condition with the exponent λ = n − 1. Corresponding results
also hold for smaller exponents, and, in fact, our methods work in general
metric spaces satisfying standard structural assumptions.

1. Introduction

We say that an open set Ω ⊂ Rn admits the (p, β)-Hardy inequality, for
1 < p < ∞ and β ∈ R, if there exists a constant C > 0 such that the
inequality

(1)
∫

Ω
|u(x)|p dΩ(x)β−p dx ≤ C

∫
Ω
|∇u(x)|p dΩ(x)β dx,

where dΩ(x) = dist(x, ∂Ω), holds for every u ∈ C∞0 (Ω). After the one-
dimensional considerations by G. H. Hardy et. al. in the early 20th century
(see [6, §330] and the references therein), these inequlities were introduced
in dimension n ≥ 2 by J. Nečas. The main point of reflection for our studies
and results is his theorem from [21] (see also A. Kufner [14] for this and
related results):

Theorem 1.1 (Nečas 1962). Let Ω ⊂ Rn be a bounded Lipschitz domain and
let 1 < p <∞. Then Ω admits the (p, β)-Hardy inequality for all β < p− 1.

Recall that a domain (an open and connected set) is said to be a Lipschitz
domain if the boundary ∂Ω can be represented locally as graphs of Lipschitz
continuous functions. It follows from this definition that the boundary of a
Lipschitz domain Ω ⊂ Rn is both ‘smooth’ and ‘thick’, the latter for instance
in the sense that

(2) Hn−1
∞
(
∂Ω ∩B(x, 2dΩ(x))

)
≥ C0dΩ(x)n−1

for all x ∈ Ω, where Hλ∞ denotes the λ-dimensional Hausdorff content. Our
main result is the following far-reaching generalization of Theorem 1.1.

Theorem 1.2. Let Ω ⊂ Rn be an open set and let 1 < p <∞. Suppose that
there exist an exponent 0 ≤ λ ≤ n− 1 and a constant C0 > 0 such that

(3) Hλ∞
(
∂Ω ∩B(x, 2dΩ(x))

)
≥ C0dΩ(x)λ

for all x ∈ Ω. Then Ω admits the (p, β)-Hardy inequality for all β < p−n+λ.
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We note that Theorem 1.2 was partly conjectured in [12]. By (2), Theo-
rem 1.1 follows from Theorem 1.2 by taking λ = n − 1. We conclude that
the smoothness of a Lipschitz boundary plays no role here, as the thickness
alone suffices for Hardy inequalities. Another important and interesting con-
sequence of Theorem 1.2 is that each simply connected domain in R2 admits
the (p, β)-Hardy (at least) for all β < p− 1.

The bound β < p − n + λ in Theorem 1.2 is optimal. In fact, it was
shown in [17] (following the unweighted considerations from [13]) that if Ω
has an isolated boundary part of (Hausdorff) dimension λ, then it is not
possible for Ω to admit the (p, p − n + λ)-Hardy inequality, although the
(p, β)-Hardy inequality might still hold for some larger β; see [17]. Also the
bound λ ≤ n−1 (whence β < p−1) is essential, as examples from [12] show.

Conditions of the type (3) are referred to as ‘inner boundary density
conditions’. By [15, Thm 1], such conditions are actually equivalent to
similar density conditions for the complement Ωc. In particular, (3) holds
for all x ∈ Ω with an exponent λ > n− q if and only if Ωc is uniformly q-fat
(see e.g. [15] for the definition). It follows that we can rewrite Theorem 1.2
in the spirit of the unweighted results by A. Ancona [1] (the case p = 2) and
J. Lewis [19], and generalize the weighted inequalities of A. Wannebo [22],
as follows:

Corollary 1.3. Let Ω ⊂ Rn be an open set and assume that Rn \ Ω is
uniformly q-fat for all q > s ≥ 1. Then Ω admits the (p, β)-Hardy inequality
whenever 1 < p <∞ and β < p− s.

To be precise, Wannebo proved in [22] that uniform p-fatness of the com-
plement, for 1 < p <∞, suffices for (p, β)-Hardy inequalities for all β < β0,
where β0 is some small positive number. Hence, the main novelties in Corol-
lary 1.3 are that we get an explicit and sharp bound for such an β0 and that
we can also deal with the cases when p ≤ s, where s is the ‘optimal’ fatness
of the complement; of course, in such cases we must have β < 0.

Our proof of Theorem 1.2 is based on rather standard ‘geometric’ ideas
and methods, which actually work in the much more general setting of a
metric measure space, provided that the space satisfies some structural con-
ditions; see Section 2.1 for this general framework. In the case β ≤ 0, Theo-
rem 1.2 is an immediate consequence of a stronger (and for β < 0 previously
unknown) result concerning the so-called pointwise Hardy inequalities; see
Section 2.4 for the definition and Theorem 4.2 for the result. In fact, The-
orem 4.2 together with [18, Thm 3.1] shows that, for β ≤ 0, condition (3)
for some λ > n − p + β is actually both necessary and sufficient for a do-
main Ω ⊂ Rn to admit a pointwise version of the (p, β)-Hardy inequality
(Corollary 4.4).

On the other hand, for β > 0 density condition (3) with an exponent
n − p + β < λ ≤ n is still necessary for pointwise inequalities by [18], but
not anymore sufficient even for the usual Hardy inequality (1), as was shown
by examples in [12]. Nevertheless, if 0 < β < p − n + λ ≤ p − 1 and (3)
holds, then the (p, β)-Hardy inequality can be obtained from the unweighted
(p − β)-Hardy inequality by an integration trick, and the theorem follows;
see Section 4 for the details.
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In [12] it was actually shown that (3) together with an additional ac-
cessibility condition suffices for a pointwise (p, β)-Hardy inequality for all
β < p−n+λ. By our Theorem 4.2, such an accessibility condition can now
be dropped altogether if β ≤ 0, and, by Theorem 1.2, for 0 < β < p − 1 if
we are only interested in the validity of the integral Hardy inequality (1).
The main theorem of [12] concerning pointwise inequalities for β > 0, with
accessibility, is generalized to metric spaces in Theorem 4.5 with a simpli-
fied proof. As the examples from [12] did show that for β ≥ p − 1 density
condition (3) alone is not sufficient for the pointwise (p, β)-Hardy inequal-
ity, we conclude that the only piece that is still missing from the complete
picture is whether the assumptions of Theorem 1.2 always (that is, also for
0 < β < p−n+λ ≤ p−1) suffice for a pointwise version of the (p, β)-Hardy
inequality. We conjecture that this is the case, and mention, for the record,
that this question was really the essence of the (now proven) Conjecture 1.6
of [12].

The organization of this paper is as follows: We begin in Section 2 with
basic definitions and other preliminaries on metric spaces, Hausdorff con-
tents, and Hardy inequalities. Section 3 is devoted to the statement and
proof of our main lemma, which is then used in Section 4 to prove the re-
sults on Hardy inequalities. For notation we remark that throughout the
paper the letter C is used to denote positive constants whose value may
change from expression to expression.

2. Preliminaries

2.1. Metric spaces. We assume that X = (X, d, µ) is a complete metric
measure space equipped with a metric d and a Borel regular outer measure
µ such that 0 < µ(B) <∞ for all balls B = B(x, r) = {y ∈ X : d(x, y) < r}.
For 0 < t < ∞, we write tB = B(x, tr), and B is the corresponding closed
ball. When A ⊂ X, ∂A is the boundary and A the closure of A. The
distance from x ∈ X to A ⊂ X is denoted d(x,A). When Ω ⊂ X is an open
set and x ∈ Ω, we also denote dΩ(x) = d(x, ∂Ω).

We assume that the measure µ is doubling, i.e. that there exists a constant
Cd ≥ 1 such that

µ(2B) ≤ Cd µ(B)

for all balls B of X. The doubling condition together with the completeness
implies that the space X is proper, that is, closed balls of X are compact.

The doubling condition gives an upper bound for the dimension of X in
the sense that there is a constant C = C(Cd) > 0 such that, for s = log2Cd,

(4)
µ(B(y, r))
µ(B(x,R))

≥ C
( r
R

)s
whenever 0 < r ≤ R < diamX and y ∈ B(x,R). The infimum of the
exponents s for which (4) holds is called the doubling dimension of X.

Another crucial assumption is that the space X supports a (weak) (1, p)-
Poincaré inequality. More precisely, we assume that there exist constants
C > 0 and τ ≥ 1 such that for all balls B ⊂ X, all continuous functions u,
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and for all upper gradients gu of u, we have the inequality

(5)
∫
B
|u− uB| dµ ≤ Cr

(∫
τB
gpu dµ

)1/p
,

where

uB =
∫
B
u dµ = µ(B)−1

∫
B
u dµ

is the integral average of u over B. Recall that a Borel function g ≥ 0 is
said to be an upper gradient of a function u (on an open set Ω ⊂ X), if for
all curves γ joining points x and y (in Ω) we have

(6) |u(x)− u(y)| ≤
∫
γ
g ds

whenever both u(x) and u(y) are finite, and
∫
γ g ds = ∞ otherwise. By a

curve we simply mean a nonconstant, rectifiable, continuous mapping from
a compact interval to X.

Examples of metric spaces satisfying the above conditions include (weigh-
ted) Euclidean spaces, compact Riemannian manifolds, Carnot groups, and
metric graphs. See for instance [3], [5], [7], and the references therein for
more information on analysis on metric spaces based on upper gradients and
Poincaré inequalities.

For the rest of the paper we explicitly assume that in the context of the
(p, β)-Hardy inequality the space X supports a (1, p)-Poincaré inequality.
However, in our proofs we sometimes need to use a (1, q)-Poincaré inequality
for an exponent q < p, but this is justified by the self-improvement property
of Poincaré inequalities, see [9].

Recall that a function u : Ω→ R is said to be (L-)Lipschitz, if

|u(x)− u(y)| ≤ Ld(x, y) for all x, y ∈ Ω.

The set of all Lipschitz functions u : Ω→ R is denoted Lip(Ω), and Lip0(Ω)
is the set of Lipschitz functions u ∈ Lip(Ω) with a compact support in Ω.
Recall that the support of a function u : Ω→ R is the closure of the set where
u is non-zero. It is straight-forward to check that the pointwise Lipschitz
constant

Lip(u;x) = lim sup
y→x

|u(x)− u(y)|
d(x, y)

defines an upper gradient g for a Lipschitz function u : Ω → R by g(x) =
Lip(u;x).

2.2. Hausdorff contents. We measure the thickness of sets E ⊂ X by
means of Hausdorff contents. The usual λ-Hausdorff content of a set A ⊂ X
is defined by

Hλ∞(A) = inf
{ ∞∑
k=1

rλk : A ⊂
∞⋃
k=1

B(xk, rk), xk ∈ A
}
,

and the Hausdorff dimension of A is then

dim(A) = inf{λ > 0 : Hλ∞(A) = 0}.
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However, in general metric spaces it is often more convenient to use a mod-
ified version of Hλ∞, namely the Hausdorff content of codimension t, which
is given for a set E ⊂ X by

H t
R(E) = inf

{∑
i∈I

µ(B(xi, ri)) r−ti : E ⊂
⋃
i∈I

B(xi, ri), ri ≤ R
}
.

Here we may again assume that xi ∈ E, as this increases H t
R(E) at most

by a constant factor.
A metric space X is said to be (Ahlfors) Q-reqular if there are constants

c1, c2 > 0 such that
c1r

Q ≤ µ(B(x, r)) ≤ c2r
Q

for all balls B(x, r) in X. It is easy to see that in a Q-regular space X the
content H t

∞(E) is comparable with the usual Hausdorff content HQ−t∞ (E)
for every E ⊂ X.

2.3. Chain condition. We introduce an important chain condition follow-
ing [4]; see also [7]. Let x ∈ Ω ⊂ X, where Ω is an open set, and take
λ,M ≥ 1 and a > 1. We say that w ∈ Ω is connected to x by a (λ,M, a)-
chain in Ω, denoted w ∈ CΩ(λ,M, a;x), if there exists a sequence of balls
Bk = B(xk, rk), k = 0, 1, 2, . . . , so that x0 = x and xk → w as k →∞, and
the following conditions hold for each k = 0, 1, 2, . . . :

(i) λBk ⊂ Ω ;
(ii) M−1dΩ(x)a−k ≤ rk ≤MdΩ(x)a−k ;
(iii) there is a ball B′k so that B′k ⊂ Bk ∩Bk+1 ⊂MB′k .
For instance, if Ω ⊂ X is a CJ -John domain with center point x, and

λ ≥ 1, then there exists M ≥ 1, depending on λ, CJ , and the doubling
constant such that w ∈ CΩ(λ,M, 2;x) for each w ∈ Ω (see [5, Thm 9.3]). We
mention that in Rn the sets CΩ(λ,M, 2;x)∩ ∂Ω agree with suitable c-visual
boundaries near x, defined in [12], where c, λ, and M only depend on each
other and n, and we may actually choose λ to be as large as we want.

2.4. Hardy inequalities. In the setting of a general metric space the (p, β)-
Hardy inequality takes the following form:

(7)
∫

Ω
|u|p dΩ

β−p dµ ≤ C
∫

Ω
gpu dΩ

β dµ,

where gu is an upper gradient of u. We say that an open set Ω ⊂ X admits
the (metric) (p, β)-Hardy inequality if there exists a constant C > 0 so that
(7) holds for every u ∈ Lip0(Ω) and for all upper gradients gu of u.

Following the unweighted considerations by Haj lasz [2] and Kinnunen and
Martio [10], a pointwise version of the weighted (p, β)-Hardy inequality (1)
was introduced in [12]. The metric space version reads as follows:

(8) |u(x)| ≤ CdΩ(x)1−β
p

(
MLdΩ(x)

(
gqudΩ

β
p
q)(x)

)1/q
,

where 1 < q < p, L ≥ 1, and MR is the usual restricted Hardy–Littlewood
maximal operator, defined by

MRf(x) = sup
0<r≤R

∫
B(x,r)

|f(y)| dµ
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for f ∈ L1
loc(X). We say that an open set Ω ⊂ X admits the pointwise

(p, β)-Hardy inequality if there exist some 1 < q < p and constants C > 0,
L ≥ 1 so that the inequality (8) holds for all u ∈ Lip0(Ω) with these q, C,
and L.
Remark. Using the maximal theorem, it is easy to see that if the pointwise
inequality (8) holds for a function u at (almost) every x ∈ Ω, then the usual
(p, β)-Hardy inequality holds for u with a constant only depending on p
and the constants from the pointwise inequality and the maximal function
inequality (cf. [12]).

3. Main Lemma

The proofs of our main results are based on the following local estimates
for Lipschitz functions vanishing at the boundary. For weight exponents
β ≤ 0 the estimate involves the whole boundary near a point x ∈ Ω, whereas
for β > 0 we need to restrict to the part of the boundary that we can connect
to x ∈ Ω with good chains of balls (cf. Section 2.3).

Lemma 3.1. Let 1 < p < ∞ and β < p, let Ω ⊂ X be an open set, and
take x ∈ Ω. Denote B(x) = B(x, dΩ(x)), and define

(a) E = ∂Ω ∩ 2B(x) if β ≤ 0,
(b) E = CΩ(λ,M, a;x) ∩ ∂Ω if 0 < β < p, where λ ≥ 2τ (τ is from

inequality (5)).

Then, for each 0 ≤ t < p − β, there exist an exponent 1 < q < p and
constants C > 0, L ≥ 1, all independent of x, such that the estimate

H t
dΩ(x)(E)

∣∣u(2τ)−1B(x)

∣∣q ≤ CdΩ(x)q−β
q
p
−t
∫
LB(x)

gu(y)q dΩ(y)β
q
p dµ(9)

holds for every u ∈ Lip0(Ω).

Proof. Our proof combines elements from the proofs of [12, Lemma 5.2] and
[8, Thm 5.9]. Let 0 ≤ t < p − β. It is easy to check that we can choose
1 < q <∞ so that

p

p− β
t < q < p.

Moreover, we may assume that X supports a (1, q)-Poincaré inequality (cf.
[9]). Also denote β′ = q

pβ. Then q/p > t/(p− β), and we have

(10) q − β′ − t = q
p(p− β)− t > 0.

Denote R = dΩ(x) and B = B(x,R). If u(2τ)−1B = 0 the claim (9) is trivial,
so we may assume that |u(2τ)−1B| > 0, and in fact, by homogeneity, that
|u(2τ)−1B| = 1. It is also clear that we may assume E 6= ∅.

Part (b): Let us start with the more complicated part (b). The proof of
part (a) goes along the same lines; we comment on the differences at the
end of the proof.

First notice that, by the properties of the chains (Section 2.3), there
exists L0 ≥ 1, independent of x, such that CΩ(λ,M, a;x) ⊂ L0B. Now fix
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w ∈ CΩ(λ,M, a;x) ∩ ∂Ω and let Bi = B(xi, ri) be the corresponding chain
of balls. Then

1 ≤ |u(w)− u(2τ)−1B| ≤ |uB0 |+ |uB0 − u(2τ)−1B|,

and it follows from the properties of the chain and the assumption 2τ ≤ λ
that B0 ⊂ (2τ)−1B. If |uB0 | < 1/2, we infer, using the above facts and the
(1, q)-Poincaré inequality, that

1
2 ≤ |uB0 − u(2τ)−1B| ≤ CR

(∫
(1/2)B

gu(y)q dµ
)1/q

≤ CR1−β/p
(∫

(1/2)B
gu(y)qdΩ(y)β

q
p dµ

)1/q

.

(11)

As H t
R(E) ≤ Cµ(B)R−t, and |u(2τ)−1B| = 1, the claim (9) easily follows

from the doubling condition.
We may hence assume that 1/2 ≤ |uB0 | = |u(w) − uB0 | for every w ∈

CΩ(λ,M, a;x) ∩ ∂Ω. Using the properties of the chain together with the
(1, q)-Poincaré inequality and the doubling condition, and the assumption
that the support of u is compact, we get the standard estimate (see for
example [4])

(12) 1 ≤ C
∞∑
k=0

rk

(∫
τBk

gqu dµ
)1/q

.

From (12) it follows that there must be a constant C1 > 0, independent of
x, u, and w, and at least one index kw ∈ N so that

(13) rkw

(∫
τBkw

gqu dµ
)1/q

≥ C1a
−kwα = C1R

−αrkw
α,

where we choose α = 1
q (q − β′ − t) > 0 (by (10)). Let us write from now on

Bw = B(xw, rw) instead of Bkw = B
(
xkw , rkw

)
.

We assumed that τBw ⊂ (λ/2)Bw, and as λBw ⊂ Ω, it follows that
rw

β ≤ CdΩ(y)β for each y ∈ τBw. Thus(∫
τBw

gqu dµ
)1/q

≤ Cr−β/pw µ(τBw)−1/q

(∫
τBw

gu(y)qdΩ(y)β
q
p dµ

)1/q

.(14)

In particular, combining (13) and (14) we obtain for each w ∈ E a ball Bw
such that

(15) µ(τBw)1/q rα−1+β/p
w ≤ CRα

(∫
τBw

gu(y)qdΩ(y)β
′
dµ

)1/q

.

But here α− 1 + β/p = t/q, so by raising both sides of (15) to power q we
get a useful estimate

(16) µ(τBw) r−tw ≤ CRq−β
′−t
∫
τBw

gu(y)qdΩ(y)β
′
dµ.

Using again the properties of the chain we see that there exists τ ′ ≥ τ
such that τBw ⊂ B(w, τ ′rw) holds for all w ∈ E. By the standard 5r-
covering lemma (see e.g. [7]), there exist points w1, w2, . . . ∈ E so that if we
denote ri = τ ′rwi , then the balls B̃i = B(wi, ri) are pairwise disjoint, but
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still E ⊂
⋃∞
i=1 5B̃i. Moreover, it is easy to find L ≥ 1, independent of x,

so that B̃i ⊂ LB for all i; recall that B = B(x, dΩ(x)). Estimate (16), the
doubling property, and the pairwise disjointness of the balls τBwi ⊂ B̃i ⊂
LB immediately yield

H t
R(E) ≤

∞∑
i=1

µ(5B̃i)(5ri)−t ≤ C
∞∑
i=1

µ
(
τBwi

)
r−twi

≤
∞∑
i=1

CRq−β
′−t
∫
τBwi

gu(y)qdΩ(y)β
′
dµ

≤ CRq−β′−t
∫
LB

gu(y)qdΩ(y)β
′
dµ.

(17)

As we assumed |u(2τ)−1B| = 1 and denoted β′ = β qp , estimate (9) for part
(b) is proven.

Part (a): Let us only give here a brief description of the main differences
compared to part (b). We begin by fixing w ∈ E = ∂Ω ∩ 2B, then define
rk = 2−kR, k ∈ N, and denote Bk = B(w, rk).

If |uB0 | < 1/2, we see with a calculation similar to (11) and using the
inclusion B0 ⊂ 3B that

1 ≤ CR1−β/p
(∫

3τB
gu(y)qdΩ(y)β

q
p dµ

)1/q

.

Notice that the assumption β ≤ 0 guarantees that Rβ ≤ CdΩ(y)β for each
y ∈ 3τB. The claim (9) follows.

We may hence assume that 1/2 ≤ |uB0 | = |u(w)−uB0 |. But now estimate
(12) follows again for balls Bk by a standard ‘telescoping’ argument using the
(1, q)-Poincaré inequality (cf. e.g. [7]), and the rest of the proof is almost
identical to part (b); for instance, (13) holds now with a = 2. Notice in
particular that since β ≤ 0 and w ∈ E, it follows again that rkβ ≤ dΩ(y)β

for each y ∈ Bk. At the end we can use the 5r-covering theorem directly to
balls τBw, as they are now centered at w, and the desired Hausdorff content
estimate follows just as in (17). The proof is complete. �

4. Weighted and pointwise inequalities

Let us begin this section by rephrasing Theorem 1.2 in general metric
spaces:

Theorem 4.1. Let Ω ⊂ X be an open set and let 1 < p <∞. Suppose that
there exist an exponent t ≥ 1 and a constant C0 > 0 such that

(18) H t
dΩ(x)

(
∂Ω ∩B(x, 2dΩ(x))

)
≥ C0µ

(
B(x, dΩ(x))

)
dΩ(x)−t

for all x ∈ Ω. Then Ω admits the (p, β)-Hardy inequality for all β < p− t.

In the case β ≤ 0, Theorem 4.1 is an immediate consequence of the follow-
ing result on pointwise inequalities. The special case β = 0 of Theorem 4.2
is contained in the results of [11].

Theorem 4.2. Let Ω ⊂ X be an open set and let 1 < p < ∞ and β ≤ 0.
Suppose that there exist an exponent 0 ≤ t < p − β and a constant C0 > 0
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such that the density condition (18) holds for all x ∈ Ω. Then Ω admits the
pointwise (p, β)-Hardy inequality.

Proof. Let u ∈ Lip0(Ω), x ∈ Ω, and denote R = dΩ(x), B = B
(
x, (2τ)−1R

)
.

Then
|u(x)| ≤ |u(x)− uB|+ |uB|.

Choose 1 < q < p just as in the proof of Lemma 3.1. Again a standard
telescoping trick using the (1, q)-Poincaré inequality gives

|u(x)− uB| ≤ CR
(
MR/2g

q
u(x)

)1/q
≤ CR1−β/p(MR/2(gqudΩ

βq/p)(x)
)1/q

.

On the other hand, using assumption (18), part (a) of Lemma 3.1, and the
doubling condition, we obtain

|uB|q ≤ Cµ
(
B(x,R)

)−1
RtR

q−β q
p
−t
∫
B(x,LR)

gu(y)q dΩ(y)β
q
p dµ

≤ CRq−β
q
pMLR

(
gqudΩ

β q
p
)
(x).

The pointwise (p, β)-Hardy inequality follows easily from the previous esti-
mates. �

Conversely, we have the following necessary condition for pointwise Hardy
inequalities. The Euclidean case was proven in [18], and the special case
β = 0 was done in [11] in the metric space setting. We omit the proof here,
as the modifications needed to the proofs in [18] and [11] are obvious.

Proposition 4.3. Let Ω ⊂ X be an open set and assume that Ω admits
the pointwise (p, β)-Hardy inequality (8). If β < 0, we assume in addition
that X is Q-regular. Then there exists t < p− β such that the inner density
condition (18) holds for all x ∈ Ω.

Combining Theorem 4.2 and Proposition 4.3 we obtain a characterization
in the case β < 0, which is new even in Rn; for β = 0 the corresponding
result holds in metric spaces by [11].

Corollary 4.4. Assume that X is Q-regular. Let Ω ⊂ X be an open set
and let 1 < p < ∞ and β < 0. Then Ω admits the pointwise (p, β)-Hardy
inequality (8) if and only if there exist an exponent t < p−β and a constant
C0 > 0 such that the inner density condition (18) holds for all x ∈ Ω.

Let us finally give a proof for our main result concerning weighted Hardy
inequalities:

Proof of Theorem 4.1. As the pointwise (p, β)-Hardy inequality always im-
plies the usual (p, β)-Hardy inequality (see the remark at the end of Section
2.4), Theorem 4.1 follows from Theorem 4.2 for β ≤ 0.

Hence, we only need to consider the case 0 < β < p − t. But now
p− β > t ≥ 1, and so Theorem 4.2, applied to the unweighted case, implies
that Ω admits the (p−β, 0)-Hardy inequality. The claim now follows in fact
from a straight-forward metric space generalization of a more general result
of [16, Lemma 2.1], but let us recall here the calculations in this special case
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for the sake of completeness and in order to emphasize the role of elementary
tools behind the theorem.

To this end, let u ∈ Lip0(Ω) and let gu be an upper gradient of u. Now
define v = |u|

p
p−β . As β > 0, we see that v is a Lipschitz-function with a

compact support in Ω, and, moreover,

gv(x) =
( p
p−β
)
|u(x)|β/(p−β)gu(x)

defines an upper gradient for v. As the (p−β, 0)-Hardy inequality holds for
v, we obtain, with the help of Hölder’s inequality (observe p−β

p + β
p = 1),

that ∫
Ω
|u(x)|pdΩ(x)−(p−β) dµ =

∫
Ω
|v(x)|p−βdΩ(x)−(p−β) dµ

≤ C1

∫
Ω
gv(x)p−β dµ = C2

∫
Ω
|u(x)|βgu(x)p−β dµ

= C2

∫
Ω

(
|u(x)|βdΩ(x)

β(β−p)
p

)(
gu(x)p−βdΩ(x)

β(p−β)
p

)
dµ

≤ C2

(∫
Ω
|u(x)|pdΩ(x)β−p dµ

)β
p
(∫

Ω
gu(x)pdΩ(x)β dµ

) p−β
p

.

(19)

From (19) the (p, β)-Hardy inequality for u easily follows by first dividing
with the first integral term on the right-hand side (which we may assume to
be non-zero), and then taking both sides to power p/(p− β). �

Remark. There is an interesting observation concerning the procedure in
(19) and the best possible constants in Hardy inequalities. Namely, it is well-
known that the best possible constant for the p-Hardy inequality in a convex
domain Ω ⊂ Rn, n ≥ 1, is C1 = (p/(p− 1))p, and in other smooth domains
the constant is in general larger; see e.g. [6] (n = 1) and [20] (n ≥ 2). On
the other hand, the best possible constant for the one-dimensional weighted
(p, β)-Hardy inequality, with β < p−1, is (p/(p−β−1))p (see [6]), and this
can be trivially generalized to, say, a ball or a half-space in Rn.

Usually, our methods on Hardy inequalities lead to constants which are far
from being optimal. However, if we have in (19) that C1 =

( p−β
p−β−1

)p−β (the
optimal constant for the (p−β)-Hardy), we see directly from the calculation
that the constant in the corresponding (p, β)-Hardy inequality will then be
C =

( p
p−β−1

)p
, which is, at least in the above special cases, the best possible

constant for the (p, β)-Hardy inequality. This raises the question whether
the above procedure preserves the optimal constants in (weighted) Hardy
inequalities even in more general cases.

We finish by recording the following result, which coincides in the case
X = Rn with the main theorem of [12]. The proof is identical to the proof
of Theorem 4.2 besides that the part (b) of Lemma 3.1 (instead of part
(a)) is needed. When X = Rn, the derivation of this result using Lemma
3.1(b) is — once all the technicalities arising from the metric space setting
are removed — in a theoretical sense a simplification over the proof from
[12], as here we avoid completely the use of Whitney type coverings and
Frostman’s lemma.
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Theorem 4.5. Let Ω ⊂ X be an open set and let 1 < p <∞. Suppose that
there exist an exponent t ≥ 0 and constants C0 > 0, M ≥ 1, λ ≥ 2τ , and
a > 1 such that

(20) H t
dΩ(x)

(
CΩ(λ,M, a;x) ∩ ∂Ω

)
≥ C0µ

(
B(x, dΩ(x))

)
dΩ(x)−t

for all x ∈ Ω. Then Ω admits the pointwise (p, β)-Hardy inequality for all
β < p− t, and hence also the usual (p, β)-Hardy inequality for these β.

Notice that, contrary to Theorem 4.1, we do not need to assume above
that t ≥ 1, only t ≥ 0. Moreover, as noted in the Introduction, examples
from [12] show that some kind of an ‘accessibility’ condition is needed to
guarantee even the validity of the usual integral Hardy inequalities when
β ≥ p− 1 (corresponding to the case 0 ≤ t < 1). As a concrete example we
mention that if Ω ⊂ Rn is a uniform domain satisfying (18) for all x ∈ Ω,
then also (20) holds with suitable constants for all x ∈ Ω; see [12] for details.
In particular, this is true in a snowflake domain, where we can have t < 1.

Acknowledgement. The author is grateful to Professor Pekka Koskela for
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