
SUFFICIENT BOUNDARY CONDITIONS
FOR HARDY INEQUALITIES

JUHA LEHRBÄCK

1. Introduction

In a domain (an open and connected set) Ω ⊂ Rn, the (p, β)-Hardy inequality,
for 1 < p <∞ and β ∈ R, reads as

(1)

∫
Ω

|u(x)|p dΩ(x)β−p dx ≤ C

∫
Ω

|∇u(x)|p dΩ(x)β dx.

Here dΩ(x) = dist(x, ∂Ω) denotes the distance from a point x ∈ Ω to the
boundary ∂Ω, and u ∈ C∞0 (Ω), i.e., u is a smooth test-function with a compact
support in Ω. We say that Ω ⊂ Rn admits the (p, β)-Hardy inequality if there
exists a constant C > 0 so that (1) holds for all u ∈ C∞0 (Ω) with this constant.
In the unweighted case β = 0 we simply speak of the p-Hardy inequality.

In this talk, I will first rewiev the history of the Hardy inequalities, starting
from the one-dimensional results by G.H. Hardy et al. In higher dimensions,
these inequalities were first considered by J. Necas, who proved an important
result for Lipschitz domains. On the other hand, the ‘smoothness’ of the bound-
ary is not essential for Hardy inequalities, as was proven by A. Ancona, J. Lewis,
and A. Wannebo. The main result of this talk is a recent sufficient condition
for weighted Hardy inqualities, given in terms of a Hausdorff content density
condition for the boundary. This contains the above results as special cases and
gives a sharp bound for the exponents that are admissible in weighted Hardy
inequalities under such boundary density.

2. Hardy inequalities

2.1. One-dimensional inequalities. The origins of Hardy inequalities trace
back to the early 20th century. In the famous 1925 paper [3], G.H. Hardy proved
that the inequality

(2)

∫ ∞
0

(
1

x

∫ x

0

f(t) dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)p dx,

where 1 < p <∞, holds whenever f ≥ 0 is measurable and, moreover, that the
constant on the right-hand side is the best possible; see also [4, Section 9.8]. An
excellent account on the interesting — and not that straigt-forward — progress
leading to the discovery of inequality (2) can be found in [9].
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The proof of (2) is rather simple, the only tools needed are integration by
parts and Hölder’s inequality. The same method can be applied in order to
prove that if β 6= p − 1, then each measurable f satisfies the one-dimensional
weighted Hardy inequality (cf. [4, §330])∫ ∞

0

F (x)pxβ−pdx ≤
(

p

|p− β − 1|

)p ∫ ∞
0

|f(x)|pxβ dx,

where

F (x) =

{∫ x
0
|f(t)| dt for β < p− 1∫∞

x
|f(t)| dt for β > p− 1.

The constant on the right-hand side is again the best possible.
On the other hand, if u : (0,∞) → R is absolutely continuos, then using

the above inequality with f(x) = u′(x) gives the following theorem (this is
essentially [8, Thm. 5.2]):

Theorem 2.1. Let 1 < p < ∞ and β 6= p− 1. If u : (0,∞) → R is absolutely
continuous with limx→0 u(x) = 0 = limx→∞ u(x), then u satisfies the inequality∫ ∞

0

|u(x)|p xβ−p dx ≤
(

p

|p− 1− β|

)p ∫ ∞
0

|u′(x)|p xβ dx,

where the constant on the right-hand side is the best possible.

This is exactly the (p, β)-Hardy inequality (1) in the domain (0,∞) ⊂ R.
However, if we consider inequality (1) in a bounded interval (a, b) ⊂ R, it is not
hard to see that in this case the inequality holds for all absolutely continuos
functions with limx→a+ u(x) = 0 = limx→b− u(x) if and only if β < p− 1.

2.2. Higher dimensional inequalities. Hardy inequalities were introduced
to higher dimensional Euclidean spaces Rn, n ≥ 2, by J. Nečas, who also proved
the following basic theorem in the 1960’s; this theorem is the main point of
reflection for our studies.

Theorem 2.2 (Nečas [15]). Let Ω ⊂ Rn be a bounded Lipschitz domain. Then
Ω admits the (p, β)-Hardy inequality whenever 1 < p <∞ and β < p− 1.

Recall that a domain Ω is Lipschitz if the boundary can be represented locally
as graphs of Lipschitz-continuous functions. The proof of Theorem 2.2 is based
on this fact and the use of the one-dimensional (p, β)-Hardy inequality (1) on
bounded intervals having one end point at the boundary ∂Ω. Hence the bound
β < p− 1 is natural, but it is also the best possible, since the (p, p− 1)-Hardy
inequality fails to hold e.g. in the ball B(0, 1) ⊂ Rn.

However, it is nowadays well-understood that the ‘smoothness’ of the bound-
ary is not that important, but it is indeed the ‘thickness’ or ‘fatness’ of the
complement (or the boundary) that arises as a natural sufficient condition for
Hardy inequalities. The following theorem, dating to the late 1980’s, has been
of fundamental importance.
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Theorem 2.3 (Ancona [1] (p = 2), Lewis [14], Wannebo [16]). Let 1 < p <∞
and assume that the complement of a domain Ω ⊂ Rn is uniformly p-fat. Then
Ω admits the p-Hardy inequality

Uniform p-fatness is a density condition for the variational p-capacity, but I
will not give the exact definition here, as this condition can be expressed equiv-
alently in terms of a Hausdorff content density condition, and such conditions
are very closely related to the assumptions in our main results. Theorem 2.3 is
thus given here only for the record; Corollary 3.4 below formulates this result
using Hausdorff contents.

The result of Wannebo was actually stronger than Theorem 2.3, namely,
he proved that the uniform p-fatness of Ωc suffices in fact for (p, β)-Hardy
inequalities for all β ≤ β0, where β0 > 0 is some small (positive) number.
However, no explicit expression for β0 was given.

3. Boundary density

Definition 3.1. The λ-Hausdorff content of a set E ⊂ Rn is

Hλ
∞(E) = inf

{ ∞∑
i=1

rλi : E ⊂
∞⋃
i=1

B(zi, ri)

}
.

The Hausdorff dimension of E ⊂ Rn is the number

dimH(E) = inf
{
λ > 0 : Hλ

∞(E) = 0
}
.

We have the following relation between uniform fatness and ‘thickness’ in
terms of Hausdorff contents:

Proposition 3.2. Let 1 < p < ∞. Then a closed set E ⊂ Rn is uniformly
p-fat if and only if there exists some exponent λ > n− p and a constant C > 0
so that

Hλ
∞
(
E ∩B(w, r)

)
≥ Crλ for every w ∈ E and all r > 0.

For the idea of the proof, see e.g. the discussion in [7]. It is worth a mention
that a deep result of John Lewis from [14], concerning the self-improvement of
uniform p-fatness, is needed in the proof of the necessity part of Proposition 3.2.

On the other hand, if we are only interested in domains and their comple-
ments, we can use the following equivalence from [10]:

Proposition 3.3. Let 1 < p < ∞ and let Ω ⊂ Rn be a domain. Then the
complement Ωc is uniformly p-fat if and only if the following ‘inner’ Hausdorff
content density condition holds for the boundary ∂Ω with an exponent λ > n−p:

(3) Hλ
∞
(
B(x, 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω.

Note however that the validity of condition (3) with λ > n − p does not
guarantee the uniform p-fatness of the boundary ∂Ω (!); an example of this is
given by domains with outer cusps.

Combining Proposition 3.3 with Theorem 2.3, we obtain the following suffi-
cient condition for the p-Hardy inequality.



4

Corollary 3.4 (Ancona–Lewis–Wannebo revisited). Let 1 < p < ∞ and as-
sume that condition (3) holds in a domain Ω ⊂ Rn with an exponent λ > n−p.
Then Ω admits the p-Hardy inequality.

4. Main results

The following result, which extends both Theorem 2.2 and Corollary 3.4 and
gives a sharp bound for β for which the (p, β)-Hardy inequality holds under the
inner boundary density condition (3), was recently established in [13].

Theorem 4.1. Let 1 < p <∞, let Ω ⊂ Rn be a domain, and assume that the
inner boundary density condition (3) holds in Ω with an exponent 0 ≤ λ ≤ n−1.
Then Ω admits the (p, β)-Hardy inequality for all β < p− n+ λ.

Indeed, it is easy to see that a bounded Lipschitz domain Ω satisfies (3)
with λ = n − 1, and so Theorem 4.1 gives Hardy inequalities for all β <
p− n + (n− 1) = p− 1; and if (3) holds with some λ > n− p, then the value
β = 0 is admissible in the (p, β)-Hardy inequality.

The requirement λ ≤ n−1 (and thus β < p−1) is essential in Theorem 4.1, as
examples from my earlier work [7] with Pekka Koskela show that the conclusion
of Theorem 4.1 need not hold for β ≥ p− 1 even if (3) holds with an exponent
λ > n − 1. See however the discussion at Section 6 on how it is possible to
exceed the ‘classically sharp’ bound p− 1 for β.

In the plane R2, Theorem 4.1 has the interesting consequence that besides
Lipschitz domains, all simply connected domains admit the (p, β)-Hardy in-
equality whenever 1 < p <∞ and β < p− 1.

The first main ingredient in the proof of Theorem 4.1 is the use of a pointwise
variant of the (p, β)-Hardy inequality: We say that Ω admits the pointwise
(p, β)-Hardy inequality, if there exist C > 0 and 1 < q < p such that

(4) |u(x)| ≤ CdΩ(x)1−β
p

(
M3dΩ(x)

(
|∇u|qdΩ

β
p
q
)
(x)
)1/q

for all x ∈ Ω

whenever u ∈ C∞0 (Ω). In (4) MR is the usual restricted Hardy-Littlewood
maximal operator, defined by

MRf(x) = sup
0<r≤R

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy

for f ∈ L1
loc(Rn); notation |A| is used here for the Lebesgue measure of A ⊂ Rn.

Inequality (4) was introduced in the paper [7], following the unweighted versions
of P. Haj lasz [2] and J. Kinnunen and O. Martio [6].

Using the maximal theorem and the fact that we have 1 < q < p in (4) it
is easy to see that inequality (4) implies the usual (p, β)-Hardy inequality (1).
For β ≤ 0, Theorem 4.1 thus follows from the following pointwise result:

Proposition 4.2. Let 1 < p < ∞, let Ω ⊂ Rn be a domain, and assume that
the inner boundary density condition (3) holds with an exponent 0 ≤ λ ≤ n.
Then, if β ≤ 0 and β < p−n+λ, Ω admits the pointwise (p, β)-Hardy inequality.
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5. Proofs

One of the main tools in our proofs of Hardy inequalities is the following
(1, q)-Poincaré inequality (1 ≤ q <∞), which holds for every u ∈ C1

0(Rn) with
a constant C = C(n, q) > 0:∫

B

|u− uB| dx ≤ Cr
(∫

B

|∇u|q dx
)1/q

.

Here we use the notation

uB =

∫
B

u dx = |B|−1

∫
B

u dx.

For instance, it follows from the above inequality that if B = B(w, r) ⊂ Rn and
u ∈ C1

0(Rn), then

|uB − u2B| ≤
1

|B|

∫
B

|u− u2B| dx ≤
C

|2B|

∫
2B

|u− u2B| dx

≤ Cr
(∫

2B

|∇u|q dx
)1/q

.

(5)

The proof of Proposition 4.2 is based on the following Lemma:

Lemma 5.1. Let 1 < p < ∞ and β ≤ 0, let Ω ⊂ Rn be an open set, and
take x ∈ Ω. Denote B(x) = B(x, dΩ(x)) and E = ∂Ω ∩ 2B(x). Then, for
each λ > n − p + β, there exist an exponent 1 < q < p and a constant C > 0
(independent of x) such that the estimate

Hλ
∞(E)

∣∣uB(x)

∣∣q ≤ CdΩ(x)q−β
q
p

+λ

∫
3B(x)

|∇u(y)|q dΩ(y)β
q
p dy(6)

holds for every u ∈ C∞0 (Ω).

Proof. Our proof combines elements from the proofs of [7, Lemma 5.2] and [5,
Thm. 5.9]. Let λ > n−p+β. It is easy to check that we can choose 1 < q <∞
so that

p
n− λ
p− β

< q < p.

Also denote β′ = q
p
β. Then q/p > (n− λ)/(p− β), and we have

(7) q − β′ − n+ λ = q
p
(p− β)− n+ λ > 0.

Denote R = dΩ(x) and B = B(x,R). If uB = 0 the claim (6) is trivial, so we
may assume that |uB| > 0, and in fact, by homogeneity, that |uB| = 1.

Let us now fix w ∈ E = ∂Ω ∩ 2B, and then define rk = 2−kR for k ∈ N and
denote Bk = B(w, rk). Then

1 = |uB| ≤ |uB0|+ |uB0 − uB|;

recall that here B = B(x, dΩ(x)) and B0 = B(w, dΩ(x))
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If it happens that |uB0| < 1/2, then |uB0−uB| ≥ 1/2, and we calculate, using
the (1, q)-Poincaré inequality (as in (5)), and the facts that B,B0 ⊂ 3B and
Rβ ≤ CdΩ(y)β for every y ∈ 3B ∩ Ω (since β ≤ 0), that

1
2
≤ |uB0 − uB| ≤ |uB0 − u3B|+ |uB − u3B|

≤ CR

(∫
3B

|∇u(y)|q dy
)1/q

≤ CR1−β/p
(∫

3B

|∇u(y)|qdΩ(y)β
q
p dy

)1/q

.

As Hλ
R(E) ≤ CRλ and |uB| = 1, the claim (6) readily follows.

We may hence assume that 1/2 ≤ |uB0| = |u(w)−uB0| for every w ∈ E. But
then we can use (still for a fixed w ∈ E) a standard ‘telescoping’ argument,
using again the (1, q)-Poincaré inequality:

1
2
≤ |u(w)− uB0| ≤

∞∑
k=0

|uBk+1
− uBk | ≤ C

∞∑
k=0

rk

(∫
Bk

|∇u(y)|q dy
)1/q

.(8)

From (8) it follows that for each α > 0 there must exist a constant C1 > 0,
independent of x, u, and w, and at least one index kw ∈ N so that

(9) C1R
−αrkw

α = C12−kwα ≤ rkw

(∫
Bkw

|∇u(y)|q dy
)1/q

,

as otherwise a simple calculation using geometric series would lead to a con-
tradiction with estimate (8). Let us now choose α = 1

q
(q − β′ − n+ λ) whence

α > 0 by (7), and write Bw = B(xw, rw) instead of Bkw = B
(
xkw , rkw

)
for the

corresponding ball satisfying (9).
Since β ≤ 0 and w ∈ E, it follows again that rk

β ≤ CdΩ(y)β for each y ∈ Bk.
Thus (∫

Bw

|∇u(y)|q dy
)1/q

≤ Cr−β/pw |Bw|−1/q

(∫
Bw

|∇u(y)|qdΩ(y)β
q
p dy

)1/q

.(10)

Combining (9) and (10), we now obtain for each w ∈ E a ball Bw such that

(11) rα−1+β/p+n/q
w ≤ CRα

(∫
Bw

|∇u(y)|qdΩ(y)β
′
dy

)1/q

.

But here α− 1 + β/p+ n/q = λ/q, so by raising both sides of (11) to power q
we get a useful estimate

(12) rλw ≤ CRq−β′−n+λ

∫
Bw

|∇u(y)|qdΩ(y)β
′
dy.

By a standard 5r-covering lemma, there now exists points w1, w2, . . . ∈ E
so that the balls Bi = B(wi, rwi) are pairwise disjoint, but still E ⊂

⋃∞
i=1 5Bi.
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Estimate (12) and the pairwise disjointness of the balls Bi ⊂ 3B now yield

Hλ
∞(E) ≤

∞∑
i=1

(5rwi)
λ ≤ C

∞∑
i=1

rλwi

≤
∞∑
i=1

CRq−β′−n+λ

∫
Bi

|∇u(y)|qdΩ(y)β
′
dy

≤ CRq−β′+λ
∫

3B

|∇u(y)|qdΩ(y)β
′
dy.

As we assumed |uB| = 1 and denoted β′ = β q
p
, estimate (6) is finally proven. �

It is now rather straight-forward to prove the pointwise (p, β)-Hardy inequal-
ities for β ≤ 0:

Proof of Proposition 4.2. Let u ∈ C∞0 (Ω), x ∈ Ω, and denote R = dΩ(x), B =
B
(
x,R

)
. Then

|u(x)| ≤ |u(x)− uB|+ |uB|.
Choose 1 < q < p just as in the proof of Lemma 5.1. Using again an estimate
of the type (5), with Bk = B

(
x, rk

)
, rk = 2−kR, we obtain (since β < p)

|u(x)− uB| ≤
∞∑
k=0

|uBk+1
− uBk | ≤ C

∞∑
k=0

rk

(∫
Bk

|∇u(y)|q dy
)1/q

≤ C
∞∑
k=0

(2−kR)1−β/p
(∫

Bk

|∇u(y)|qdΩ(y)β
q
p dy

)1/q

≤ CR1−β/p(MR(|∇u|qdβq/pΩ )(x)
)1/q

.

On the other hand, it follows from assumption (3) and Lemma 5.1, that

|uB|q ≤ CR−λRq−β q
p

+λ

∫
B(x,3R)

|∇u(y)|q dΩ(y)β
q
p dy

≤ CRq−β q
pM3R

(
|∇u|qd

β q
p

Ω

)
(x).

The pointwise (p, β)-Hardy inequality now follows by combining the above three
estimates. �

Let us finally give a proof for our main result concerning weighted Hardy
inequalities:

Proof of Theorem 4.1. As the pointwise (p, β)-Hardy inequality always implies
the usual (p, β)-Hardy inequality, Theorem 4.1 follows from Proposition 4.2 for
β ≤ 0.

Hence, we only need to consider the case 0 < β < p − n + λ. But now
p − β > n − λ ≥ 1, (recall that we assumed λ ≤ n − 1) and so Proposition
4.2, applied to the unweighted case, implies that Ω admits the (p−β, 0)-Hardy
inequality. The claim now follows in fact from a more general result of [11,
Lemma 2.1] but in our case the calculations can be made as follows:
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Let u ∈ C∞0 (Ω) and define v = |u|
p

p−β . As 0 < β < p, we see that v is a
Lipschitz-continuous function with a compact support in Ω, and, moreover,

|∇v(x)| =
(

p
p−β

)
|u(x)|β/(p−β)|∇u(x)|

almost everywhere in Ω. By approximation, the (p − β, 0)-Hardy inequality
holds for v as well, and so we obtain, with the help of Hölder’s inequality
(observe p−β

p
+ β

p
= 1), that∫

Ω

|u(x)|pdΩ(x)−(p−β) dx =

∫
Ω

|v(x)|p−βdΩ(x)−(p−β) dx

≤ C

∫
Ω

|∇v(x)|p−β dx = C

∫
Ω

|u(x)|β|∇u(x)|p−β dx

= C

∫
Ω

(
|u(x)|βdΩ(x)

β(β−p)
p

)(
|∇u(x)|p−βdΩ(x)

β(p−β)
p

)
dx

≤ C

(∫
Ω

|u(x)|pdΩ(x)β−p dx

)β
p
(∫

Ω

|∇u(x)|pdΩ(x)β dx

) p−β
p

.

(13)

The (p, β)-Hardy inequality for u follows from (13) by first dividing with the
first integral term on the right-hand side (which we may assume to be non-zero),
and then taking both sides to power p/(p− β). �

6. . . . and beyond

Contrary to Proposition 4.2, where β ≤ 0, we obtain in Theorem 4.1 for
0 < β < p− 1 only usual Hardy inequalities, not pointwise inequalities. How-
ever, it is also possible to establish pointwise Hardy inequalities for β > 0, but
with the cost of an additional accessibility condition. In fact, the first general
sufficient condition for weighted pointwise Hardy inequalities was the following
theorem from [7]:

Theorem 6.1. Let 1 < p <∞ and let Ω ⊂ Rn be a domain. Assume that there
exist 0 ≤ λ ≤ n, c ≥ 1, and C > 0 so that

(14) Hλ
∞
(
∂vis
x,cΩ

)
≥ CdΩ(x)λ for every x ∈ Ω.

Then Ω admits the pointwise (p, β)-Hardy inequality for all β < p− n+ λ.

Here ∂vis
x,cΩ is called the c-visible boundary near x ∈ Ω, and it consists of the

points w ∈ ∂Ω which are accessible from x by a c-John curve γ in Ω, that is,
γ : [0, l]→ Ω ∪ {w} is parametrized by arc length, γ(0) = w, γ(l) = x, and

(15) d(γ(t), ∂Ω) ≥ 1
c
t

for each t ∈ [0, l]. Besides Lipschitz domains, where (14) holds with λ = n− 1,
this condition is satisfied for instance in snowflake-type domains in Rn with
n − 1 < λ < n. Thus, contrary to Theorem 4.1, values β > p − 1 can be
reached in Theorem 6.1 — and thus also in the corresponding usual (p, β)-
Hardy inequalities — provided that λ > n− 1.
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The proof of Theorem 6.1 is similar to the proof of Proposition 4.2, except
that in the substitute of Lemma 5.1 we have to chooce the balls Bk so that
instead of being centered at the boundary point w, they are centered at a
John-curve joining w to x; in addition, these balls have to be well within the
domain, but suitable dilatations of these balls still need to cover the point w.
The details can be found in [13].

Nevertheless, there appears presently a gap concerning our knowledge on
pointwise Hardy inequalities: For 0 < β < p − 1 we do not know if the inner
boundary density condition (3) with an exponent λ > n − p + β suffices for
Ω to admit the pointwise (p, β)-Hardy inequality; for β ≤ 0 this is sufficient by
Proposition 4.2, and for β ≥ p− 1 examples from [7] show that (3) alone does
not suffice, and in fact the accessibility part of Theorem 6.1 is needed even for
the usual Hardy inequalities when β ≥ p− 1.

Let me end by remarking that the inner boundary density condition (3) with
an exponent λ > n − p + β is also necessary for the pointwise (p, β)-Hardy
inequality (see [12]), and thus for β ≤ 0 we have the following characterization:

Corollary 6.2. Let Ω ⊂ Rn be a domain and let 1 < p <∞ and β ≤ 0. Then
Ω admits the pointwise (p, β)-Hardy inequality (4) if and only if there exists an
exponent λ > n− p + β such that the inner density condition (3) holds for all
x ∈ Ω.
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