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Juha Lehrbäck (University of Jyväskylä) Neighborhood capacities Helsinki 04102010 1 / 37



1 Introduction

2 Preliminaries

3 Upper bounds

4 Lower bounds

5 An example

6 On sets of zero capcity
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Setting

Let (X , d , µ) be a metric measure space. When E ⊂ X and t > 0, we
denote

Et = {x ∈ X : dist(x ,E ) < t}

and call Et the (open) t-neighborhood of E . Our main purpose is to study
the p-capacities capp(E ,Et) of a compact set E as t varies (especially
when t → 0).

Here

capp(E ,Ω) = inf
{∫

Ω
|Du|p dµ : 0 ≤ u ∈ Lip0(Ω), u = 1 in E

}
for Ω ⊂ X open and E ⊂ Ω compact, Lip0(Ω) is the set of compactly
supported Lipschitz-functions in Ω, and the function Du is a ’suitable
gradient’ of u ∈ Lip0(Ω) (in Rn we have Du = ∇u).
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Sets of non-zero capacity

A compact set E ⊂ X is of zero capacity, capp(E ) = 0, if capp(E ,Ω) = 0
for all open sets Ω ⊃ E ; otherwise we write capp(E ) > 0.

It is immediate that capp(E ) = 0 if and only if capp(E ,Et) = 0 for all
0 < t < diam(E ).

For sets of non-zero capacity (in Rn) we have the following result by
Väisälä:

Theorem (Väisälä (MMJ, 1975))

Let 1 < p <∞. If E ⊂ Rn is a compact set with capp(E ) > 0, then
capp(E ,Et)→∞ as t → 0.

(The same actually holds in a ’reasonable’ metric space setting as well)
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More history

We also have the following results for the n-capacity in Rn:

Theorem (Vuorinen (CGAQRM, 1985))

If E ⊂ Rn is a compact set, then capn(E ,Et) ≤ Ct−n for every
0 < t < diam(E ). Moreover, t−n is the best asymptotics that one can
have for a general set.

Theorem (Heikkala (AASCFD, 2002))

If E ⊂ Rn is a compact λ-Ahlfors regular set for 0 ≤ λ < n, then
capn(E ,Et) ≈ t−λ for every 0 < t < diam(E ).

These results were obtained using modulus estimates. Porosity of E was
assumed in the lower bound, but this follows from the λ-regularity for
λ < n.
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A result for p-capacity

It is now natural to ask how capp(E ,Et) behaves, when (e.g.) E is
λ-regular.

Theorem (L. 2010)

Let 1 < p <∞ and 0 ≤ λ < n, and assume that E ⊂ Rn is an Ahlfors
λ-regular compact set. If p > n − λ, then

capp(E ,Et) ≈ tn−λ−p

for all 0 < t < diam(E ), and if p ≤ n − λ, then capp(E ,Et) = 0 for all
t > 0.

This result follows from more general upper and lower bounds that we
establish separately with weaker assumptions; these results hold in general
metric spaces as well.
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2. Preliminaries
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Metric spaces

We assume that X = (X , d , µ) is a metric mesure space satisfying the
following (standard) assumptions:

measure µ is doubling: µ(2B) ≤ Cdµ(B) for each ball B ⊂ X

X supports a (weak) p-Poincaré inequality:∫
B
|u − uB | dµ ≤ Cr

(∫
τB

gp
u dµ

)1/p

whenever u ∈ L1
loc(X ) and gu is an (or a weak) upper gradient of u:

For all (or p-almost all) curves γ joining x , y ∈ X

|u(x)− u(y)| ≤
∫
γ

gu ds. (1)

For instance, if u ∈ Lip(Ω), then (1) holds with

gu(x) = Lip(u; x) = lim sup
y→x

|u(x)− u(y)|
d(x , y)

.
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Metric spaces II

If µ is doubling, then there exists a number 0 ≤ s <∞ such that

µ(B(y , r))

µ(B(x ,R))
≥ C

( r

R

)s
(2)

whenever 0 < r ≤ R < diam X and y ∈ B(x ,R); this holds certainly for
s = log2 Cd .

In the following we fix some s for which (2) holds, and call this the
doubling dimension of X .

Measure µ is called (Ahlfors) s-regular, if µ(B(x , r)) ≈ r s for every x ∈ X
and 0 < r < diam(X ).

More generally, a set E ⊂ X is said to be (Ahlfors) λ-reqular if

Hλ(E ∩ B(x , r)) ≈ rλ

whenever x ∈ E and 0 < r < diam(E ).
(Here Hλ is the usual Hausdorff measure → )
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Hausdorff and Minkowski

We define the Hausdorff and Minkowski contents of dimension λ as

Hλr (E ) = inf

{∑
k

rλk : E ⊂
⋃
k

B(xk , rk), xk ∈ E , 0 < rk ≤ r

}
,

and

Mλ
r (E ) = inf

{
Nrλ : E ⊂

N⋃
k=1

B(xk , r), xi ∈ E

}
,

respectively.

It is immediate that Hλr (E ) ≤Mλ
r (E ) for each compact E ⊂ X .

The λ-Hausdorff measure of E is Hλ(E ) = limr→0Hλr (E ).
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Dimensions

The Hausdorff dimension of E ⊂ X is

dimH(A) = inf{λ > 0 : Hλ(A) = 0}

The lower and upper Minkowski dimension of E ⊂ X are defined to be

dimM(E ) = inf
{
λ > 0 : lim inf

r→0
Mλ

r (E ) = 0
}

and
dimM(E ) = inf

{
λ > 0 : lim sup

r→0
Mλ

r (E ) = 0
}
,

respectively.

Notice that for each compact set E ⊂ X we have

dimH(E ) ≤ dimM(E ) ≤ dimM(E ),

where all inequalities can be strict. If dimM(E ) = dimM(E ), we simply
write dimM(E ) = dimM(E ).

Juha Lehrbäck (University of Jyväskylä) Neighborhood capacities Helsinki 04102010 12 / 37



Hausdorff and Minkowski revisited

In general metric spaces it is often convenient to use modified versions of
Hλr and Mλ

r , namely the following Hausdorff and Minkowski contents of
codimension q:

H̃q
r (E ) = inf

{∑
k

µ(Bk) r−q
k : E ⊂

⋃
k

Bk , xk ∈ E , 0 < rk ≤ r

}
,

where we write Bk = B(xk , rk), and

M̃q
r (E ) = inf

{
r−q

∑
k

µ(B(xk , r)) : E ⊂
⋃
k

B(xk , r), xk ∈ E

}
.

Note that in a s-regular space H̃q
r ≈ Hs−q

r and M̃q
r ≈Ms−q

r .

Juha Lehrbäck (University of Jyväskylä) Neighborhood capacities Helsinki 04102010 13 / 37



Porous sets

A set E ⊂ X is α-porous (for 0 < α < 1), if for every w ∈ E and all
0 < r < diam(E ) there exists a point y ∈ X such that

B(y , αr) ⊂ B(w , r) ∩ (X \ E ).

It is well-known that in an s-regular metric space X a set E ⊂ X is porous
if and only if the Assouad dimension dimA(E ) < s.

Recall that for a λ-regular set E ⊂ X we have dimH(E ) = dimA(E ) = λ.
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3. Upper bounds
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A general upper bound

Lemma

Let 1 ≤ p <∞. Then there exists a constant C = C (X , p) > 0 such that

capp(E ,Et) ≤ CM̃q
t/3(E )tq−p

whenever E ⊂ X is a compact set and 0 < r < diam(E ).

Idea: Cover E with balls Bi = B(wi , t/3), wi ∈ E , i = 1, . . . ,N, and
define

u(x) = max
1≤i≤N

{
0, 1− 2t−1 dist(x ,Bi )

}
.

Then u ∈ Lip0(Et), u = 1 in E , and u has an upper gradient gu such that

gu(x)p ≤
N∑

i=1

(t/2)−pχ2Bi
(x) for a.e. x ∈ Et . . .
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A general upper bound, cont’d..

. . . gu(x)p ≤
N∑

i=1

(t/2)−pχ2Bi
(x) for a.e. x ∈ Et .

Thus, by the doubling condition,

capp(E ,Et) ≤
∫

Et

gp
u dµ ≤

N∑
i=1

(t/2)−pµ(2Bi ) ≤ C (t/3)−p
N∑

i=1

µ(Bi ).

Taking the infimum over all such covers yields the claim

capp(E ,Et) ≤ CM̃p
t/3(E ) = CM̃q

t/3(E )tq−p.

(the second equality holds for all q)

Notice that no Poincaré inequalities are needed here.
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Upper bound under bounded volume growth

As a simple corollary of the previous result we obtain:

Lemma

Let 1 ≤ p <∞ and assume that µ(B(w , r)) ≤ crd whenever w ∈ E and
0 < r < diam(E ). Then there exists a constant C = C (X , p, c) > 0 such
that

capp(E ,Et) ≤ CMλ
t/3(E )td−λ−p

for all 0 < r < diam(E ).

Idea: If µ(B(w , r)) ≤ crd for all w ∈ E and r < diam(E ), we have

M̃q
r (E ) ≤ cMd−q

r (E ) for all 0 < r < diam(E ). Thus the previous lemma
with q = d − λ gives

capp(E ,Et) ≤ CM̃q
t/3(E )tq−p ≤ CMλ

t/3(E )td−λ−p.

Juha Lehrbäck (University of Jyväskylä) Neighborhood capacities Helsinki 04102010 18 / 37



In particular...

Proposition

(a) Let 1 ≤ p <∞ and assume that E ⊂ X is a compact set satisfying

lim supr→0 M̃
q
r (E ) <∞. Then there exists a constant

C = C (X ,E , p, q) > 0 such that

capp(E ,Et) ≤ Ctq−p

for all 0 < t < diam(E ).
(b) If E ⊂ X is a compact set satisfying lim supr→0Mλ

r (E ) <∞, and if in
addition µ(B(w , r)) ≤ crd whenever w ∈ E and 0 < r < diam(E ), then
there exists a constant C = C (X ,E , p, d , λ, c) > 0 such that

capp(E ,Et) ≤ Ctd−λ−p

for all 0 < t < diam(E ). This is true, in particular, if λ > dimM(E ).
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4. Lower bounds
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A general lemma

Our lower bounds for neighborhood capacities follow from the next general
lemma:

Lemma

Let 1 ≤ p <∞ and let E ⊂ X be a compact α-porous set. Assume that
the (1, p)-Poincaré inequality is valid for all balls B(w , r) with w ∈ E and
0 < r < diam(E ), and let q < p. Then there exists a constant
C = C (X ,E , p, q) > 0 such that

capp(E ,Et) ≥ CH̃q
10τα−1t

(E )tq−p

for all 0 < t < diam(E ).

(Here τ ≥ 1 is the dilatation constant from the weak Poincaré inequality.)
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Idea of the proof I

Take q < p and let 0 < t < diam(E ). Fix w ∈ E and define
rk = 21−kα−1t, Bk = B(w , rk). Let u ≥ 0 be a test function for the
capacity capp(E ,Et). From the α-porosity it follows that u = 0 in

B̃ = B(y , t) for some y ∈ B0. Hence, using doubling,

|uB0 | = µ(B0)−1

∫
B0\B̃

u ≤ 1− µ(B̃)

µ(B0)

≤ 1− C
( t

2α−1t

)s

= 1− C (α/2)s .

As u ≥ 0 and u(w) = 1, we have |u(w)− uB0 | = C (α/2)s > 0. From this
it follows (using ‘telescoping’) that

1 ≤ C
∞∑

k=0

rk

(∫
τBk

gp
u dµ

)1/p
.
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Idea of the proof II

But if

1 ≤ C
∞∑

k=0

rk

(∫
τBk

gp
u dµ

)1/p
,

then, for δ := (p − q)/p > 0 there exists C1 > 0 and an index kw ∈ N
such that

rkw

(∫
τBkw

gp
u dµ

)1/p
≥ C12−kw δ = Ct−δrkw

δ.

Write from now on Bw = B(xw , rw ) instead of Bkw = B
(
xkw , rkw

)
.

We thus obtain for each w ∈ E a ball Bw such that

r−q
w µ(τBw ) ≤ Ctp−q

∫
τBw

gu(y)p dµ. (3)
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Idea of the proof III

With the basic ‘5r ’-covering theorem we now obtain points wi ∈ E ,
i = 1, 2, . . . , such that the balls τBi = B(wi , τ rwi ) are pairwise disjoint,
but still E ⊂

⋃∞
i=1 5τBi . Note that the radii of these covering balls are no

more than 10τα−1t. Using the previous estimate with doubling, the
pairwise disjointness of the balls τBi , and the fact that gu = 0 outside Et ,
we infer

H̃q
10τα−1t

(E ) ≤
∞∑
i=1

µ(5τBi )(5τ rwi )
−q ≤ C

∞∑
i=1

µ(τBi )r−q
wi

≤ C
∞∑
i=1

tp−q

∫
τBi

gu(y)p dµ

≤ Ctp−q

∫
Et

gu(y)p dµ,

proving the Lemma.
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Corollary

The following result is an immediate consequence of our main Lemma and
general results for sets of zero capacity:

Corollary

Let 1 < p <∞ and assume that X is a doubling metric space supporting
the (1, p)-Poincaré inequality. Let E ⊂ X be a compact α-porous set with
0 < H̃q(E ) <∞. Then, for all 0 < t < diam(E ), we have

capp(E ,Et) ≥ Ctq−p if p > q,

and
capp(E ) = 0 if p ≤ q.

Here we only need to know that H̃q(E ) > 0 implies

0 < H̃q
10τα−1 diam(E)

(E ) ≤ H̃q
10τα−1t

(E ) for all 0 < t < diam(E ).
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Another corollary

Combining the previous result and the upper bounds for neighborhood
capacities in a regular space, we obtain the following version of our main
result:

Corollary

Let 1 < p <∞ and assume that X is a s-regular metric space supporting
the (1, p)-Poincaré inequality. Let E ⊂ X be a compact α-porous set with

0 < Hλ(E ) ≤ lim sup
t→0

Mλ
t (E ) <∞.

Then, for all 0 < t < diam(E ), we have

capp(E ,Et) ≈ ts−λ−p if p > s − λ,

and
capp(E ) = 0 if p ≤ s − λ.
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‘Trivial’ counterexamples

Our lower bounds do not hold without the assumption that E is porous.
Indeed, for a ball B ⊂ Rn we have

capp(B,Bt) ≈ tn−(n−1)−p = t1−p � t−p ≈ Hn
5t(B)tn−n−p

as t → 0, and, more generally, for a snowflake-type domain Sλ ⊂ Rn with
dimH(∂Sλ) = λ ∈ (n − 1, n), that

capp(S , (Sλ)t) ≈ tn−λ−p � t−p ≈ Hn
5t(Sλ)tn−n−p

as t → 0.

These compact sets B and Sλ are n-regular (and of positive Lebesgue
measure).

Nevertheless, this fact plays no essential role in the failure of the lower
bounds, as we will see.
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5. An example
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What can we do?

Given λ ∈ (1, 2), it is possible to construct a Cantor-type set E ⊂ R2 so
that Hλ∞(E ) > 0 and dimH(E ) < 2 (we can even take dimH(E ) = λ), but
for all 1 ≤ p <∞

capp

(
E ,Etk

)
� t2−λ−p

k as k →∞,

for a suitable sequence tk → 0.

Higher dimensional examples can easily be constructed along the same
lines.

Notice that such a set E can not be porous.

Juha Lehrbäck (University of Jyväskylä) Neighborhood capacities Helsinki 04102010 29 / 37



Idea of the construction

The idea is to use a typical ‘alternating’ Cantor-type construction, where
we have

(a) ‘thick’ generations of squares to guarantee the loss of porosity (or
equivalently giving Assouad dimension 2 for the resulting set E ),

and

(b) ‘thin’ generations which keep the Hausdorff dimension of E in control,
in particular bounded away from 2.
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Some details I

Fix 0 < δ < λ− 1 and λ < λ̃ < 2. After running the alternating
construction k times we have 4nk squares of side length lnk

. Let Enk

denote the union of all these squares.

(a) ‘thick’: Choose tk so that t1−λ+δ
k ≥ 4nk lnk

, and define
uk(x) = max{0, 1− 2t−1

k dist(x ,Enk )}. Then∫
|∇uk |p dx ≤ C 4nk lnk

(tk/2)1−p ≤ Ct1−λ+δ
k t1−p

k � t2−λ−p
k .

Now, we only need to guarantee, that uk is an admissible test function for
capp(E ,Etk ) (where E is the resulting Cantor set).

To this end, we remove from the squares in Enk ‘very narrow’ (< tk)
strips, and continue in this way untill we have 4nk+mk squares of side
length lnk+mk

< tk , so that indeed Enk ⊂ Etk , and thus uk ∈ Lip0(Etk ).
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Some details II

(b) ‘thin’: After this we take the 4nk+mk squares and run the usual
λ-dimensional Cantor construction on these for m̃k steps, where m̃k is so
large that

4nk+mk+m̃k (lnk+mk+m̃k
)λ̃ < 1.

(This is possible because λ < λ̃).

From this it ultimately follows, that dimH(E ) ≤ λ̃ < 2.

We then set nk+1 = nk + mk + m̃k , and continue from step (a).

It is now evident, that, for all k , Hλctk (E ) > C1 for some C1 > 0, since E is
‘larger’ than the standard λ-dimensional Cantor set. Hence it is not true
that

capp(E ,Et) ≥ CHλct(E )t2−λ−p

for all 0 < t < diam(E ), showing the failure of our lower bounds.
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6. On sets of zero capcity
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Hausdorff and capacity

The following result holds with very weak assumptions on the space X ; we
basically only need doubling.

Proposition

Let 1 < p <∞ and assume that a compact set E ⊂ X satisfies
H̃p(E ) <∞. Then capp(E ) = 0.

It is actually very easy to show that if Ω ⊃ E is open, then

capp(E ,Ω) ≤ CH̃p
r (E )

for all 0 < r < d(E ,X \ Ω)/2, where C = Cd is the doubling constant
(this holds for p = 1 as well).

The proof is just like our previous proof for the upper bounds of
neighborhood capacities.
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The ‘hard’ part

It requires a bit more work to prove the following Lemma:

Lemma

Let 1 < p <∞ and let E ⊂ X be a compact set. Assume that there exists
a constant 0 < M <∞ such that

capp(E ,Ω) < M for all open Ω ⊃ E .

Then capp(E ) = 0.

Idea: Fix 0 < t0 < diam(E ), and choose u1 ∈ Lip0(Et0) such that
u1|E = 1 and u1 has an upper gradient g1 with

∫
gp

1 < M. Write
V1 = {u1 > 1/2} ⊃ E , let t1 = dist(E ,X \ V1)/2 > 0, and define
v1 = min{2u1, 1}. Then v1|V1 = 1 and h1 = 2g1χX\V1

is an upper gradient

of v1. Moreover,
∫

hp
1 < 2pM.
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The ‘hard’ part 2

Then take u2 ∈ Lip0(Et1) with u2|E = 1 and
∫

gp
2 < M for an upper

gradient g2 of u2; note that spt(u2) ⊂ V1. Write V2 = {u2 > 1/2} ⊃ E
and let t2 = dist(E ,X \ V2)/2 > 0. Define as above v2 = min{2u2, 1},
whence v2|V2 = 1 and h2 = 2g2χX\V2

is an upper gradient of v2 with∫
hp

2 < 2pM.

This way we find numbers t0 > t1 > · · · > tk > · · · > 0 and functions
vk ∈ Lip0(Etk ) with upper gradients hk satisfying: (i) vk |E = 1, (ii) the
supports spt(hk) are pairwise disjoint, and (iii)

∫
hp
k < 2pM for each k .

Define ϕj = j−1
∑j

k=1 vk . Then clearly ϕj ∈ Lip0(Et0) and ϕj |E = 1 for

each j . Moreover, ψj = j−1
∑j

k=1 hk is an upper gradient of ϕj . Using the
properties (ii) and (iii) of the functions hk we easily calculate

capp(E ,Et0) ≤
∫

E1

ψp
j dµ = j−p

j∑
k=1

∫
E1

hp
k dµ < j1−p2pM

j→∞−−−→ 0.
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