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1. Introduction
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What is ... Quasiadditivity?

Let X be a space and let Cap(·) be a notion of capacity, defined for
(compact) sets E ⊂ X .

Capacities are countably subadditive, i.e. if E =
⋃

i∈N Ei , then

Cap(E ) ≤
∑
i∈N

Cap(Ei ).

In this talk we are interested in the converse inequality (up to a constant).
More precisely, if U ⊂ X and W =W(U) = {Qi}i∈N is a decomposition or
a covering of U, we ask if there exists a constant 1 ≤ A <∞ such that∑

i∈N
Cap(E ∩ Qi ) ≤ A Cap(E )

for every (compact) E ⊂ U. If this is the case, we say that the capacity
Cap is quasiadditive with respect to W.
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Our setting

Let X = (X , d , µ) be a (sufficienty nice) metric measure space, and let
Ω ⊂ X be an open set.

We consider the variational p-capacity

capp(E ,Ω) = inf
{∫

Ω
|Du|p dµ : u ∈ N1,p

0 (Ω), u = 1 in E
}

for compact E ⊂ Ω. Here N1,p
0 (Ω) is the space of (Newtonian) Sobolev

functions u with u = 0 in X \ Ω, and the function |Du| is the ’length of
the gradient’ of u.
(in Rn think of W 1,p

0 (Ω) or C∞0 (Ω) with Du = ∇u being the (weak)
gradient).

In fact, one may replace N1,p
0 (Ω) by Lip0(Ω), the set of compactly

supported Lipschitz-functions in Ω, whence |Du| is the pointwise Lipschitz
constant.
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Quasiadditivity of variational capacity

The variational p-capacity capp(·,Ω) is quasiadditive with respect to a
decomposition or a covering W of Ω, if there exists a constant A > 0 such
that for each compact E ⊂ Ω we have∑

Q∈W
capp(E ∩ Q,Ω) ≤ A capp(E ,Ω).

First remarks:

If W is not infinite, the question is not very interesting :)

There are certainly ‘bad’ decompositions
(I don’t even mention bad coverings)

Whitney-type decompositions/coverings make sense

The capacity capp(·,Ω) is not always quasiadditive w.r.t. a Whitney
decomposition of Ω (even when Ω ⊂ Rn).
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Aikawa & Riesz

Theorem (Aikawa (1991, Math. Scand.))

Let 1 ≤ p <∞ and suppose F ⊂ Rn is a closed set satisfying
dimA(F ) < n − αp.

Then the Riesz capacity Rα,p is quasiadditive with respect to the Whitney
decomposition W =W(Rn \ F ), i.e. for every E ⊂ Rn∑

Qi∈W
Rα,p(E ∩ Qi ) ≤ ARα,p(E ).

Note: The dimension dimA was defined especially for this result; always
dimH(E ) ≤ dimA(E ).

Earlier considerations on quasiadditivity, in the case F = {0} and ‘annular
decompositions’, were made by Landkof (1972) and Adams (1978).
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Riesz capacity vs. variational capacity

Recall that the Riesz capacity Rα,p(E ) is defined, for 1 < p <∞ and
0 < α < n, as follows:

Rα,p(E ) = inf
{
||f ||pp :

∫
Rn

f (y)

|x − y |n−α
dy ≥ 1 for all x ∈ E , f ≥ 0

}
.

For α = 1,
R1,p(E ) ‘ ∼ ’ capp(E ,Rn \ F ),

(always R1,p(E ) ≤ capp(E ,Ω)) so quasiadditivity for the variational
p-capacity under the condition dimA(F ) < n − p is at least plausible.

Juha Lehrbäck (Jyväskylän yliopisto) Quasiadditivity of variational capacity Helsinki 20022012 7 / 37



Questions:

Quasiadditivity for the variational capacity, 1 < p <∞?

Quasiadditivity in metric measure spaces?

The relation between quasiadditivity and the Hardy inequality:∫
Ω
|u(x)|p dΩ(x)−p dx ≤ C

∫
Ω
|∇u(x)|p dx ,

where Ω ⊂ Rn is open, dΩ(x) = dist(x , ∂Ω), and the constant
C > 0 is independent of u ∈ C∞0 (Ω).

Is Aikawa’s condition dimA(Ωc) < n − p sufficient for the
quasiadditivity of variational capacity in Ω? Is it necessary?

What is Aikawa’s dimension dimA?
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2. Preliminaries
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Metric spaces: doubling

We assume that X = (X , d , µ) is a metric mesure space satisfying the
following (standard) assumptions:

(1) Measure µ is doubling: There exists cd > 0 such that
µ(2B) ≤ Cdµ(B) for each ball B ⊂ X .

Measure µ is called (Ahlfors) Q-regular, if there is C > 0 such that

1
C rQ ≤ µ(B(x , r)) ≤ CrQ

for every x ∈ X and all 0 < r < diam(X ). A regular measure is certainly
doubling.
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Metric spaces: Poincaré

(2) X supports a (weak) p-Poincaré inequality:∫
B
|u − uB | dµ ≤ Cr

(∫
λB

gp
u dµ

)1/p

whenever u ∈ L1
loc(X ) and gu is an (or a weak) upper gradient of u:

For all (or p-almost all) curves γ joining x , y ∈ X

|u(x)− u(y)| ≤
∫
γ

gu ds. (1)

We use above the notation

uB :=
1

µ(B)

∫
B

u dµ =:

∫
B

u dµ.

For instance, if u ∈ Lip(Ω), then (1) holds with

gu(x) = Lip(u; x) = lim sup
y→x

|u(x)− u(y)|
d(x , y)

.
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Aikawa dimension

Aikawa’s notion of dimension is given in terms of integrals of the distance
function. In a Q-regular metric space X = (X , µ, d) the definition is as
follows:

Definition (Aikawa)

Let E ⊂ X . The Aikawa dimension dimA(E ) is the infimum of those t > 0
for which there exists a constant ct such that∫

B(x ,r)
d(y ,E )t−Q dµ ≤ ctr t

for every x ∈ E and all 0 < r <∞.

We use the convention that if the set E ⊂ X has positive measure, then
dimA(E ) = Q, and thus for each E ⊂ X we have 0 ≤ dimA(E ) ≤ Q.
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Assouad dimension

Definition (Assouad)

Let E ⊂ X . The Assouad dimension dimAS(E ) is the infimum of all β > 0
for which the following covering property holds: There exists cβ ≥ 1 such
that, for all 0 < ε < 1/2, each subset F ⊂ E can be covered by at most
cβε
−β balls of radius r = ε diam(F ).

Recall, for instance, that in a Q-regular metric space X a set E ⊂ X is
porous if and only if dimA(E ) < Q.

There are many equivalent definitions for the Assouad dimension since this
same concept has appeared on many occasions under different names.
(See the paper by Luukkainen for a historical account).

Recently, one more equivalence was added to the list:
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Aikawa and Assouad

Theorem (L.-Tuominen, 2011, JJMS (to appear))

Assume that X is Q-regular. Then dimA(E ) = dimAS(E ) for each E ⊂ X .

In particular, we have that dimH(E )
(
≤ dimM(E )

)
≤ dimA(E ) for all

(bounded) sets, where the inequalities can be strict. On the other hand,
for regular sets dimH = dimA.

If the measure is only doubling, it is useful to define a related codimension:
The Aikawa co-dimension codimA(E ) is the supremum of all q > 0 for
which there exists a constant cq such that∫

B(x ,r)
d(y ,E )−q dµ ≤ cqr−qµ(B(x , r))

for every x ∈ E and all 0 < r < diam(E ).
If µ is Q-regular, then codimA(E ) = Q − dimA(E ) for every E ⊂ X .
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(Newtonian) Sobolev spaces

The (Newtonian) Sobolev space is defined as

N1,p(X ) = {u : X → [−∞,∞] : ‖u‖N1,p(X ) <∞},

where

‖u‖N1,p(X ) :=

(∫
X
|u|p dµ + inf

g

∫
X

gp dµ

)1/p

;

here the infimum is taken over all upper gradients g of u, and we identify
functions u, v ∈ N1,p if ‖u − v‖N1,p(X ) = 0.

If Ω ⊂ Rn is an open set, then N1,p(Ω) = W 1,p(Ω).

Now the variational p-capacity of (a measurable set) E with respect to Ω is

capp(E ,Ω) := inf
u

inf
gu

∫
X

gp
u dµ,

where the infimum is taken over all u ∈ N1,p
0 (Ω) with u = 1 on E , and

over all upper gradients gu of u. (If there are no such functions u, we say
that capp(E ,Ω) =∞.)
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Whitney balls

When Ω ⊂ X is open and 0 < c < 1, we fix a Whitney type covering
Wc(Ω) = {Bi}i∈I consisting of closed balls Bi = B(xi , c dist(xi ,X \ Ω)),
xi ∈ Ω, such that the balls (1/5)Bi are pairwise disjoint (use the
5r -covering theorem). We often write ri = cdΩ(xi ) = c dist(xi ,X \ Ω)).

We need to be able to dilate the Whitney balls without having too much
overlap; this is always possible for sufficiently small c :

Lemma

Let Ω ⊂ X be an open set. Fix L ≥ 1 and let Wc(Ω) = {Bi}i∈I be a
Whitney-type covering of Ω with c ≤ (3L)−1. Then the overlap of the
balls LBi is bounded by a uniform constant.
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Capacity of Whitney balls

We need for Whitney balls Bi ∈ Wc(Ω) the following capacity estimate
(WBCE)

c1r−p
i µ(Bi ) ≤ capp(Bi ,Ω) ≤ c2r−p

i µ(Bi ),

where c1, c2 depend on Wc(Ω) but not on Bi .

In the upper bound only doubling is needed, but the lower bound is not
always true, and so some information on the ‘geometry’ of X is required,
e.g. that

1 < p < Q, µ is Q-regular, µ(X ) =∞ and X supports a p-Poincaré
inequality;
or

The p-Hardy inequality is valid for all u ∈ Lip0(Ω) (or u ∈ N1,p
0 (Ω)).
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3. Results: Quasiadditivity, Maz’ya, and Hardy

Juha Lehrbäck (Jyväskylän yliopisto) Quasiadditivity of variational capacity Helsinki 20022012 18 / 37



The Maz’ya connection

From now on, we assume doubling and p-Poincaré.

Lemma (The Main Lemma)

Assume that Ω ⊂ X is an open set with a Whitney-type covering
Wc(Ω) = {Bi}i∈I (for a sufficiently small c). Then capp(·,Ω) is
quasiadditive with respect to Wc if and only if there exists C > 0 such that∫

E
dΩ(x)−p dµ ≤ C capp(E ,Ω) (2)

for each compact set E ⊂ Ω. (In the ‘only if’-part we need WBCE).

The latter part of the Main Lemma (eq. (2)) is a so-called Maz’ya-type
characterization for the p-Hardy inequality, and thus we obtain the
following corollaries:
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The Hardy connection

Corollary

Let Wc(Ω) be a Whitney covering of an open Ω ⊂ X with a suitably small
parameter 0 < c < 1. Then capp(·,Ω) is quasiadditive with respect to
Wc(Ω) if and only if Ω admits the p-Hardy inequality. (WBCE in the ‘only
if’-part)

Here we say that an open set Ω ⊂ X admits the p-Hardy inequality if∫
Ω
|u(x)|p dΩ(x)−p dµ ≤ C

∫
Ω

gu(x)p dµ

for all u ∈ N1,p
0 (Ω). Since this holds if and only if∫

E
dΩ(x)−p dµ ≤ C capp(E ,Ω)

for each compact set E ⊂ Ω (Maz’ya in Rn, Korte–Shanmugalingam in
X ), we obtain the above corollary from the Main Lemma.
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The Hardy connection and uniform fatness

Corollary

Let Wc(Ω) be a Whitney covering of an open Ω ⊂ X with a suitably small
parameter 0 < c < 1. If X \ Ω is uniformly p-fat, then capp(·,Ω) is
quasiadditive with respect to Wc(Ω).

Recall that a closed set E ⊂ X is uniformly p-fat if for every x ∈ E and
all r > 0

capp

(
E ∩ B(x , r),B(x , 2r)

)
≥ C capp

(
B(x , r),B(x , 2r)

) (
≈ rQ−p

)
,

or equivalently, in a Q-regular space,
Hλ∞(E ∩ B(x , r)) ≥ Crλ for some λ > Q − p.

Since uniform p-fatness of the complement X \ Ω implies the p-Hardy
inequality in Ω (Ancona, Lewis, Wannebo in Rn,
Björn–MacManus–Shanmugalingam in X (cf. also Korte–L.–Tuominen)),
the above result follows from the previous corollary.
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Small boundary parts

The following implies a counterpart for the Aikawa theorem:

Lemma

Assume that µ is Q-regular, µ(X ) =∞, 1 < p < Q, and that
dimA(X \ Ω) < Q − p. Furthermore, assume that Ω satisfies a ‘uniform
John-type’ condition. Then there is A > 0 such that∫

E
dΩ(x)−p dµ ≤ A capp(E ,Ω)

for all compact E ⊂ Ω.

By a ‘uniform John-type’ condition we mean that each Whitney ball can
be joined to an arbitrarily large Whitney ball using a c-John curve γ; that
is, γ : [0, l(γ)]→ X satisfies d(γ(t),X \ Ω) ≥ ct for all t ∈ [0, l(γ)].

Using the Main Lemma, we thus obtain quasiadditivity (and the p-Hardy
inequality) from the assumptions of the above Lemma.
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4. Tools from nonlinear potential theory
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Minimizers and superminimizers

A function u ∈ N1,p
loc (Ω) is a p-minimizer, if∫

sptϕ
gp
u dµ ≤

∫
sptϕ

gp
u+ϕ dµ (3)

for all ϕ ∈ Lip0(Ω); here we use the minimal weak upper gradients for u
and u + ϕ.

If (3) holds for all 0 ≤ ϕ ∈ Lip0(Ω), then u is a p-superminimizer.
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p-potentials

Let E ⊂ Ω be compact. The p-potential of E is the function
uE ∈ N1,p

0 (Ω) with 0 ≤ uE ≤ 1 and uE = 1 (q.e.) in E , which satisfies∫
Ω

gp
uE

dµ = capp(E ,Ω).

The existence of such functions (in metric space setting) was proven by
Shanmugalingam.

All p-potentials are p-superminimizers, and so they satisfy the following
weak Harnack inequality (due to Kinnunen–Shanmugalingam in metric
spaces), which is crucial for us.

Lemma (Weak Harnack)

There exists constants H > 0, CH ≥ 1, and q > 0 such that if u ≥ 0 is a

p-superminimizer in CHB ⊂ Ω, then

(∫
2B

uq dµ

)1/q

≤ H inf
B

u.
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5. Proofs
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For balls

The following easy consequence of (WBCE) is our first link between
quasiadditivity and Maz’ya-type conditions:

Let Ω ⊂ X be an open set with Whitney covering Wc(Ω) = {Bi}i∈I and
let U ⊂ Ω be a union of Whitney balls, i.e., U =

⋃
i∈I0

Bi , Bi ∈ Wc(Ω).
Then ∫

U
dΩ(x)−p dµ ≈

∑
i∈I0

r−p
i µ(Bi ) ≈

∑
i∈I0

capp(Bi ,Ω).

Thus if either side is less than capp(U,Ω) (up to a constant), then so is
the other side as well.
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From balls to general sets in quasiadditivity

Let us now show that the quasiadditivity for unions of balls implies the
quasiadditivity for general sets:

Lemma

Let Ω ⊂ X be an open set with a Whitney-type covering Wc where
c ≤ min{(CH)−1, (30λ)−1}. Assume that there is C1 > 0 such that if
U =

⋃N
i=1 Bi , Bi ∈ Wc , then

N∑
i=1

capp(Bi ,Ω) ≤ C1 capp(U,Ω).

Then the capacity capp(·,Ω) is quasiadditive with respect to Wc , i.e.,
there exists a constant A > 0 such that∑

i∈I

capp(E ∩ Bi ,Ω) ≤ A capp(E ,Ω)

for all compact E ⊂ Ω.
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Tools in the proof

Our main tools in the proof of the previous lemma are the weak Harnack
inequality and the following Sobolev type inequality, proved in Rn by
Maz’ya and in X by J. Björn.

Lemma

There is a constant C > 0 such that for each u ∈ N1,p(X ) and for all balls
B ⊂ X we have∫

2B
|u|p dµ ≤ C

capp(B ∩ {u = 0}, 2B)

∫
10λB

gp
u dµ,

where λ is from the (1, p)-Poincaré inequality.
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From balls to general sets in Maz’ya

The following result is a ‘Maz’ya’ analog of the previous quasiadditivity
lemma:

Lemma

Let Ω ⊂ X be an open set with a Whitney-type covering Wc where
c ≤ min{(CH)−1, (30λ)−1}. Assume that∫

U
dΩ(x)−p dµ ≤ C0 capp(U,Ω)

whenever U ⊂ Ω is a (finite) union of Whitney balls. Then there exists a
constant C > 0 such that∫

E
dΩ(x)−p dµ ≤ C capp(E ,Ω)

whenever E ⊂ Ω is compact.
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Conclusion

Theorem

Let Ω ⊂ X be an open set and let Wc(Ω) = {Bi}i∈I be a Whitney-type
covering of Ω with c ≤ min{(CH)−1, (30λ)−1}. Then the following
conditions are equivalent for 1 < p <∞:
(a) Quasiadditivity for compact E ⊂ Ω:∑

i∈I capp(E ∩ Bi ,Ω) ≤ A capp(E ,Ω)
(b) Quasiadditivity for unions of Whitney balls.
(c) Maz’ya for unions of Whitney balls.
(d) Maz’ya for compact E ⊂ Ω:∫

E dΩ(x)−p dµ ≤ C capp(E ,Ω)

(e) p-Hardy inequality for all u ∈ N1,p
0 (Ω).

Note:

(a)
(Harnack)⇐⇒ (b)

(WBCE)⇐⇒ (c)
(Harnack)⇐⇒ (d)

(Maz’ya)⇐⇒ (e)
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A lemma towards Aikawa

To prove our counterpart for the Aikawa result, we need to show the
following:

Lemma

Assume that µ is Q-regular, µ(X ) =∞, 1 < p < Q, and that
dimA(X \ Ω) < Q − p. Furthermore, assume that Ω satisfies a uniform
John condition. Then there is A > 0 such that∫

U
dΩ(x)−p dµ ≤ A capp(U,Ω)

whenever U is a finite union of Whitney balls.

The necessity of the John condition is not known.
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6. Hardy, again...
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A necessary condition

The connection between Hardy inequalities and the Aikawa dimension was
brought up in (L. MM 2008), but a similar concept of dimension appeared
in this context already in the unpublished works of Wannebo in the 80’s.

In metric spaces we have the following dichotomy concerning the
dimension of the complement of a domain admitting the p-Hardy
inequality:

Theorem (Koskela–Zhong (2003), L.–Tuominen (2011))

Let 1 < p <∞ and assume that a domain Ω ⊂ X admits the p-Hardy
inequality. Then there exists an ε > 0, depending only on the given data,
such that for each ball B ⊂ X either

(i) dimH(2B ∩ Ωc) ≥ Q − p + ε
(

codimH(2B ∩ Ωc) ≤ p − ε
)

or
(ii) dimA(B ∩ Ωc) ≤ Q − p − ε

(
codimA(B ∩ Ωc) ≥ p + ε

)
.
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An ‘almost-characterization’ for Hardy

Assume that µ is Q-regular, µ(X ) =∞, and 1 < p < Q. Assume that
Ω ⊂ X is a domain such that either

(i) dimH(Ωc) > Q − p

(‘uniformly’: (*))

or
(ii) dimA(Ωc) < Q − p

(+John(??))

Then Ω admits the p-Hardy inequality. (This is also necessary!)

(*): Hλ∞(Ωc ∩B(x , r)) ≥ Crλ for some λ > Q − p (all x ∈ Ωc and r > 0).
A condition like this is certainly needed, even a local bound for the
dimension is not sufficient alone.

A ‘suitable combination of (i) and (ii)’ works as well, but the necessity of
the John condition is what keeps bothering us..
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Juha Lehrbäck (Jyväskylän yliopisto) Quasiadditivity of variational capacity Helsinki 20022012 36 / 37



More references

H. Aikawa, ‘Quasiadditivity of capacity and minimal thinnes’, Ann. Acad. Sci. Fenn.
Ser. A I Math. 18 (1993), no. 1, 65–75.

J. Björn, P. MacManus and N. Shanmugalingam, ‘Fat sets and pointwise
boundary estimates for p-harmonic functions in metric spaces’, J. Anal. Math. 85
(2001), 339–369.

J. Heinonen, ‘Lectures on analysis on metric spaces’, Universitext, Springer, 2001.

R. Korte and N. Shanmugalingam, ‘Equivalence and self-improvement of p-fatness
and Hardy’s inequality, and...’, Math. Z. 264 (2010), no. 1, 99–110.

N.S. Landkof, ‘Foundations of modern potential theory’, Springer, 1972.
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