Pointwise Hardy inequalities and uniform fatness

Juha Lehrbäck
partially based on a joined work with
Riikka Korte and Heli Tuominen
University of Jyväskylä
ROMFIN 2009, 17.8.2009, Turku

Original inequalities

G.H. Hardy 1925:

$$
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f(x)^{p} d x
$$

when $1<p<\infty$ and $f \geq 0$ is measurable.

Original inequalities

G.H. Hardy 1925:

$$
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f(x)^{p} d x
$$

when $1<p<\infty$ and $f \geq 0$ is measurable.
Another form:

$$
\int_{0}^{\infty}|u(x)|^{p} x^{-p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}\left|u^{\prime}(x)\right|^{p} d x
$$

where $1<p<\infty$ and u is abs. continuous, $u(0)=0$.

Hardy inequalities in \mathbb{R}^{n}

Again: $\int_{0}^{\infty}|u(x)|^{p} x^{-p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}\left|u^{\prime}(x)\right|^{p} d x$, where $1<p<\infty$ and u is abs. continuous, $u(0)=0$.

Hardy inequalities in \mathbb{R}^{n}

Again: $\int_{0}^{\infty}|u(x)|^{p} x^{-p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}\left|u^{\prime}(x)\right|^{p} d x$,
where $1<p<\infty$ and u is abs. continuous, $u(0)=0$.
This can be generalized to higher dimensions in many ways; we consider the following form:

Hardy inequalities in \mathbb{R}^{n}

Again: $\int_{0}^{\infty}|u(x)|^{p} x^{-p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}\left|u^{\prime}(x)\right|^{p} d x$,
where $1<p<\infty$ and u is abs. continuous, $u(0)=0$.
This can be generalized to higher dimensions in many ways; we consider the following form:

$$
\begin{equation*}
\int_{\Omega}|u(x)|^{p} d_{\Omega}(x)^{-p} d x \leq C \int_{\Omega}|\nabla u(x)|^{p} d x \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open, $u \in C_{0}^{\infty}(\Omega)$, and $d_{\Omega}(x)=\operatorname{dist}(x, \partial \Omega)$.

Hardy inequalities in \mathbb{R}^{n}

Again: $\int_{0}^{\infty}|u(x)|^{p} x^{-p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}\left|u^{\prime}(x)\right|^{p} d x$,
where $1<p<\infty$ and u is abs. continuous, $u(0)=0$.
This can be generalized to higher dimensions in many ways; we consider the following form:

$$
\begin{equation*}
\int_{\Omega}|u(x)|^{p} d_{\Omega}(x)^{-p} d x \leq C \int_{\Omega}|\nabla u(x)|^{p} d x \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open, $u \in C_{0}^{\infty}(\Omega)$, and $d_{\Omega}(x)=\operatorname{dist}(x, \partial \Omega)$.
If (1) holds for all $u \in C_{0}^{\infty}(\Omega)$ with the same constant
$C=C(\Omega, p, \beta)>0$, we say that $\Omega \subset \mathbb{R}^{n}$ admits the p-Hardy inequality.

Hardy inequalities in \mathbb{R}^{n}

Again: $\int_{0}^{\infty}|u(x)|^{p} x^{-p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty}\left|u^{\prime}(x)\right|^{p} d x$,
where $1<p<\infty$ and u is abs. continuous, $u(0)=0$.
This can be generalized to higher dimensions in many ways; we consider the following form:

$$
\begin{equation*}
\int_{\Omega}|u(x)|^{p} d_{\Omega}(x)^{-p} d x \leq C \int_{\Omega}|\nabla u(x)|^{p} d x \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open, $u \in C_{0}^{\infty}(\Omega)$, and $d_{\Omega}(x)=\operatorname{dist}(x, \partial \Omega)$.
If (1) holds for all $u \in C_{0}^{\infty}(\Omega)$ with the same constant
$C=C(\Omega, p, \beta)>0$, we say that $\Omega \subset \mathbb{R}^{n}$ admits the p-Hardy inequality. (We do not care here about the optimality of the constant C)

Sufficient conditions

Theorem (Nečas 1962)
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain. Then Ω admits the p-Hardy inequality for all $1<p<\infty$.

The "smoothness" of the boundary is however irrelevant here:

Sufficient conditions

Theorem (Nečas 1962)
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain. Then Ω admits the p-Hardy inequality for all $1<p<\infty$.

The "smoothness" of the boundary is however irrelevant here:
Theorem (Ancona 1986 ($p=2$), Lewis 1988, Wannebo 1990)
Let $\Omega \subset \mathbb{R}^{n}$ be a domain such that the complement $\Omega^{c}=\mathbb{R}^{n} \backslash \Omega$ is uniformly p-fat. Then Ω admits the p-Hardy inequality.

Sufficient conditions

Theorem (Nečas 1962)

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain. Then Ω admits the p-Hardy inequality for all $1<p<\infty$.

The "smoothness" of the boundary is however irrelevant here:
Theorem (Ancona $1986(p=2)$, Lewis 1988, Wannebo 1990)
Let $\Omega \subset \mathbb{R}^{n}$ be a domain such that the complement $\Omega^{c}=\mathbb{R}^{n} \backslash \Omega$ is uniformly p-fat. Then Ω admits the p-Hardy inequality.
(If $\Omega \subset \mathbb{R}^{n}$ is bounded Lipschitz, then Ω^{c} is indeed uniformly p-fat for all $1<p<\infty$)

Uniform fatness

A closed set $E \subset \mathbb{R}^{n}$ is uniformly p-fat, if it satisfies a uniform capacity density condition. Precisely:

Uniform fatness

A closed set $E \subset \mathbb{R}^{n}$ is uniformly p-fat, if it satisfies a uniform capacity density condition. Precisely:
When $\Omega \subset \mathbb{R}^{n}$ is a domain and $E \subset \Omega$ is a compact subset, the (variational) p-capacity of E (relative to Ω) is

$$
\operatorname{cap}_{p}(E, \Omega)=\inf \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in C_{0}^{\infty}(\Omega), u \geq 1 \text { on } E\right\}
$$

Uniform fatness

A closed set $E \subset \mathbb{R}^{n}$ is uniformly p-fat, if it satisfies a uniform capacity density condition. Precisely:
When $\Omega \subset \mathbb{R}^{n}$ is a domain and $E \subset \Omega$ is a compact subset, the (variational) p-capacity of E (relative to Ω) is

$$
\operatorname{cap}_{p}(E, \Omega)=\inf \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in C_{0}^{\infty}(\Omega), u \geq 1 \text { on } E\right\} .
$$

A closed set $E \subset \mathbb{R}^{n}$ is uniformly p-fat if

$$
\operatorname{cap}_{p}(E \cap \bar{B}(x, r), B(x, 2 r)) \geq C \operatorname{cap}_{p}(\bar{B}(x, r), B(x, 2 r))
$$

for every $x \in E$ and all $r>0$.

Uniform fatness

A closed set $E \subset \mathbb{R}^{n}$ is uniformly p-fat, if it satisfies a uniform capacity density condition. Precisely:
When $\Omega \subset \mathbb{R}^{n}$ is a domain and $E \subset \Omega$ is a compact subset, the (variational) p-capacity of E (relative to Ω) is

$$
\operatorname{cap}_{p}(E, \Omega)=\inf \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in C_{0}^{\infty}(\Omega), u \geq 1 \text { on } E\right\}
$$

A closed set $E \subset \mathbb{R}^{n}$ is uniformly p-fat if

$$
\operatorname{cap}_{p}(E \cap \bar{B}(x, r), B(x, 2 r)) \geq C \operatorname{cap}_{p}(\bar{B}(x, r), B(x, 2 r))
$$

for every $x \in E$ and all $r>0$.
Actually,

$$
\operatorname{cap}_{p}(\bar{B}(x, r), B(x, 2 r))=C(n, p) r^{n-p}
$$

for each ball $B(x, r) \subset \mathbb{R}^{n}$.

Uniform fatness: self-improvement

It is easy to see that if a set $E \subset \mathbb{R}^{n}$ is uniformly p-fat and $q>p$, then E is also uniformly q-fat.

Uniform fatness: self-improvement

It is easy to see that if a set $E \subset \mathbb{R}^{n}$ is uniformly p-fat and $q>p$, then E is also uniformly q-fat.

$$
\text { smaller } p \leftrightarrow \text { fatter set }
$$

Uniform fatness: self-improvement

It is easy to see that if a set $E \subset \mathbb{R}^{n}$ is uniformly p-fat and $q>p$, then E is also uniformly q-fat.

$$
\text { smaller } p \leftrightarrow \text { fatter set }
$$

On the other hand, we have a deep result by J. Lewis:

Theorem (Lewis 1988)

If $E \subset \mathbb{R}^{n}$ is uniformly p-fat for $1<p<\infty$, then there exists some $1<q<p$ such that E is uniformly q-fat.

Uniform fatness: "geometric" characterization

Uniform fatness is equivalent to the following Hausdorff content density condition:

Uniform fatness: "geometric" characterization

Uniform fatness is equivalent to the following Hausdorff content density condition:
There exists some $\lambda>n-p$ and a constant $C>0$ such that

$$
\mathcal{H}_{\infty}^{\lambda}(E \cap B(w, r)) \geq C r^{\lambda} \quad \text { for all } w \in E \text { and all } r>0
$$

Uniform fatness: "geometric" characterization

Uniform fatness is equivalent to the following Hausdorff content density condition:
There exists some $\lambda>n-p$ and a constant $C>0$ such that

$$
\mathcal{H}_{\infty}^{\lambda}(E \cap B(w, r)) \geq C r^{\lambda} \quad \text { for all } w \in E \text { and all } r>0
$$

Recall that the λ-Hausdorff content of $A \subset \mathbb{R}^{n}$ is defined by

$$
\mathcal{H}_{\infty}^{\lambda}(A)=\inf \left\{\sum_{i=1}^{\infty} r_{i}^{\lambda}: A \subset \bigcup_{i=1}^{\infty} B\left(z_{i}, r_{i}\right)\right\}
$$

Uniform fatness: "geometric" characterization

Uniform fatness is equivalent to the following Hausdorff content density condition:
There exists some $\lambda>n-p$ and a constant $C>0$ such that

$$
\mathcal{H}_{\infty}^{\lambda}(E \cap B(w, r)) \geq C r^{\lambda} \quad \text { for all } w \in E \text { and all } r>0
$$

Recall that the λ-Hausdorff content of $A \subset \mathbb{R}^{n}$ is defined by

$$
\mathcal{H}_{\infty}^{\lambda}(A)=\inf \left\{\sum_{i=1}^{\infty} r_{i}^{\lambda}: A \subset \bigcup_{i=1}^{\infty} B\left(z_{i}, r_{i}\right)\right\}
$$

It is now immediate that every non-empty $E \subset \mathbb{R}^{n}$ is unif. p-fat for all $p>n$, and an m-dimensional subspace $L \subset \mathbb{R}^{n}$ is is unif. p-fat for all $p>n-m$.

Pointwise p-Hardy inequality

Uniform p-fatness of the complement yields actually stronger(?) inequalities:

Pointwise p-Hardy inequality

Uniform p-fatness of the complement yields actually stronger(?) inequalities:

Theorem (Hajłasz 1999, Kinnunen-Martio 1997)

Let $1<p<\infty$ and assume that the complement of a domain $\Omega \subset \mathbb{R}^{n}$ is uniformly p-fat. Then there exists a constant $C>0$ such that the pointwise p-Hardy inequality

$$
|u(x)| \leq C d_{\Omega}(x)\left(M_{2 d_{\Omega}(x)}\left(|\nabla u|^{p}\right)(x)\right)^{1 / p}
$$

holds for all $u \in C_{0}^{\infty}(\Omega)$ at every $x \in \Omega$.

Pointwise p-Hardy inequality

Uniform p-fatness of the complement yields actually stronger(?) inequalities:

Theorem (Hajłasz 1999, Kinnunen-Martio 1997)

Let $1<p<\infty$ and assume that the complement of a domain $\Omega \subset \mathbb{R}^{n}$ is uniformly p-fat. Then there exists a constant $C>0$ such that the pointwise p-Hardy inequality

$$
|u(x)| \leq C d_{\Omega}(x)\left(M_{2 d_{\Omega}(x)}\left(|\nabla u|^{p}\right)(x)\right)^{1 / p}
$$

holds for all $u \in C_{0}^{\infty}(\Omega)$ at every $x \in \Omega$.
Here $M_{R} f$ is the usual restricted Hardy-Littlewood maximal function of $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, defined by $M_{R} f(x)=\sup _{r \leq R} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y$

Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy inequality (4) implies the usual p-Hardy inequality for all $p>q$:

Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy inequality (4) implies the usual p-Hardy inequality for all $p>q$:

$$
|u(x)| \leq C d_{\Omega}(x)\left(M_{2 d_{\Omega}(x)}\left(|\nabla u|^{q}\right)(x)\right)^{1 / q}
$$

Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy inequality (4) implies the usual p-Hardy inequality for all $p>q$:

$$
|u(x)|^{p} \leq C d_{\Omega}(x)^{p}\left(M_{2 d_{\Omega}(x)}\left(|\nabla u|^{q}\right)(x)\right)^{p / q}
$$

Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy inequality (4) implies the usual p-Hardy inequality for all $p>q$:

$$
|u(x)|^{p} d_{\Omega}(x)^{-p} \quad \leq C \quad\left(M_{2 d_{\Omega}(x)}\left(|\nabla u|^{q}\right)(x)\right)^{p / q}
$$

Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy inequality (4) implies the usual p-Hardy inequality for all $p>q$:

$$
\int_{\Omega}|u(x)|^{p} d_{\Omega}(x)^{-p} d x \leq C \int_{\Omega}\left(M_{2 d_{\Omega}(x)}\left(|\nabla u|^{q}\right)(x)\right)^{p / q} d x
$$

Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy inequality (4) implies the usual p-Hardy inequality for all $p>q$:

$$
\begin{aligned}
\int_{\Omega}|u(x)|^{p} d \Omega(x)^{-p} d x & \leq C \int_{\Omega}\left(M_{2 d_{\Omega}(x)}\left(|\nabla u|^{q}\right)(x)\right)^{p / q} d x \\
& \leq C \int_{\Omega}\left(|\nabla u|^{q}\right)^{p / q} d x
\end{aligned}
$$

Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy inequality (4) implies the usual p-Hardy inequality for all $p>q$:

$$
\begin{aligned}
\int_{\Omega}|u(x)|^{p} d \Omega(x)^{-p} d x & \leq C \int_{\Omega}\left(M_{2 d_{\Omega}(x)}\left(|\nabla u|^{q}\right)(x)\right)^{p / q} d x \\
& \leq C \int_{\Omega}|\nabla u|^{p} d x
\end{aligned}
$$

Revision and questions:

- By Ancona-Lewis-Wannebo:
Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: unif. p-fat

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio:
Ω^{c} unif. p-fat
$\Rightarrow \Omega$ admits the pointwise p-Hardy.

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: Ω^{c} unif. p-fat
$\Rightarrow \Omega$ admits the pointwise p-Hardy.

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: Ω^{c} unif. p-fat
$\Rightarrow \Omega$ admits the pointwise p-Hardy.
$\Rightarrow \Omega$ admits the p^{\prime}-Hardy for all $p^{\prime}>p$.

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio:

$$
\Omega^{c} \text { unif. p-fat } \Rightarrow \Omega^{c} \text { unif. } q \text {-fat, } q<p \text { (Lewis) }
$$

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: Ω^{c} unif. p-fat $\Rightarrow \Omega^{c}$ unif. q-fat, $q<p$ (Lewis) $\Rightarrow \Omega$ admits the pointwise q-Hardy.

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: Ω^{c} unif. p-fat $\Rightarrow \Omega^{c}$ unif. q-fat, $q<p$ (Lewis)
$\Rightarrow \Omega$ admits the pointwise q-Hardy.
$\Rightarrow \Omega$ admits the p-Hardy.

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: Ω^{c} unif. p-fat $\Rightarrow \Omega^{c}$ unif. q-fat, $q<p$ (Lewis)
$\Rightarrow \Omega$ admits the pointwise q-Hardy.
$\Rightarrow \Omega$ admits the p-Hardy.
- Is it true that: Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: Ω^{c} unif. p-fat $\Rightarrow \Omega^{c}$ unif. q-fat, $q<p$ (Lewis)
$\Rightarrow \Omega$ admits the pointwise q-Hardy.
$\Rightarrow \Omega$ admits the p-Hardy.
- Is it true that: Pointwise p-Hardy $\Rightarrow p$-Hardy ??
- We have: Ω^{c} unif. n-fat $\Leftrightarrow \Omega$ admits the n-Hardy (in \mathbb{R}^{n}). (Ancona $n=2$, Lewis)

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: Ω^{c} unif. p-fat $\Rightarrow \Omega^{c}$ unif. q-fat, $q<p$ (Lewis)
$\Rightarrow \Omega$ admits the pointwise q-Hardy.
$\Rightarrow \Omega$ admits the p-Hardy.
- Is it true that: Pointwise p-Hardy $\Rightarrow p$-Hardy ??
- We have: Ω^{c} unif. n-fat $\Leftrightarrow \Omega$ admits the n-Hardy (in \mathbb{R}^{n}). (Ancona $n=2$, Lewis)
- But: Ω^{c} unif. p-fat $\nLeftarrow \Omega$ admits the p-Hardy if $1<p<n$. (a punctured ball $B(0, r) \backslash\{0\} \subset \mathbb{R}^{n}$ admits the p-Hardy for all $p \neq n$, but is not unif. p-fat for $p \leq n$.)

Revision and questions:

- By Ancona-Lewis-Wannebo: Ω^{c} unif. p-fat $\Rightarrow \Omega$ admits the p-Hardy.
- By Hajłasz-Kinnunen-Martio: Ω^{c} unif. p-fat $\Rightarrow \Omega^{c}$ unif. q-fat, $q<p$ (Lewis)
$\Rightarrow \Omega$ admits the pointwise q-Hardy.
$\Rightarrow \Omega$ admits the p-Hardy.
- Is it true that: Pointwise p-Hardy $\Rightarrow p$-Hardy ??
- We have: Ω^{c} unif. n-fat $\Leftrightarrow \Omega$ admits the n-Hardy (in \mathbb{R}^{n}). (Ancona $n=2$, Lewis)
- But: Ω^{c} unif. p-fat $\nLeftarrow \Omega$ admits the p-Hardy if $1<p<n$. (a punctured ball $B(0, r) \backslash\{0\} \subset \mathbb{R}^{n}$ admits the p-Hardy for all $p \neq n$, but is not unif. p-fat for $p \leq n$.)
- Does the converse hold for pointwise inequalities ??

Metric spaces

For simplicity, we only consider \mathbb{R}^{n} in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X=(X, d, \mu)$, provided that

Metric spaces

For simplicity, we only consider \mathbb{R}^{n} in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X=(X, d, \mu)$, provided that

- μ is doubling: $\mu(2 B) \leq C_{d} \mu(B)$ for each ball $B \subset X$
(it follows from this that the "dimension" of X is at most $s=\log _{2} C_{d}$)

Metric spaces

For simplicity, we only consider \mathbb{R}^{n} in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X=(X, d, \mu)$, provided that

- μ is doubling: $\mu(2 B) \leq C_{d} \mu(B)$ for each ball $B \subset X$
(it follows from this that the "dimension" of X is at most
$s=\log _{2} C_{d}$)
- X supports a (weak) p-Poincaré inequality:

$$
f_{B}\left|u-u_{B}\right| d \mu \leq C_{P} r\left(f_{\tau B} g_{u}^{p} d \mu\right)^{1 / p}
$$

whenever $u \in L_{\text {loc }}^{1}(X)$ and g_{u} is an (or a weak) upper gradient of u :

Metric spaces

For simplicity, we only consider \mathbb{R}^{n} in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X=(X, d, \mu)$, provided that

- μ is doubling: $\mu(2 B) \leq C_{d} \mu(B)$ for each ball $B \subset X$
(it follows from this that the "dimension" of X is at most
$s=\log _{2} C_{d}$)
- X supports a (weak) p-Poincaré inequality:

$$
f_{B}\left|u-u_{B}\right| d \mu \leq C_{P} r\left(f_{\tau B} g_{u}^{p} d \mu\right)^{1 / p}
$$

whenever $u \in L_{\text {loc }}^{1}(X)$ and g_{u} is an (or a weak) upper gradient of u : For all (or p-almost all) curves γ joining $x, y \in X$

$$
|u(x)-u(y)| \leq \int_{\gamma} g_{u} d s
$$

Metric spaces

For simplicity, we only consider \mathbb{R}^{n} in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X=(X, d, \mu)$, provided that

- μ is doubling: $\mu(2 B) \leq C_{d} \mu(B)$ for each ball $B \subset X$
(it follows from this that the "dimension" of X is at most
$s=\log _{2} C_{d}$)
- X supports a (weak) p-Poincaré inequality:

$$
f_{B}\left|u-u_{B}\right| d \mu \leq C_{P} r\left(f_{\tau B} g_{u}^{p} d \mu\right)^{1 / p}
$$

whenever $u \in L_{\text {loc }}^{1}(X)$ and g_{u} is an (or a weak) upper gradient of u : For all (or p-almost all) curves γ joining $x, y \in X$

$$
|u(x)-u(y)| \leq \int_{\gamma} g_{u} d s
$$

In particular, the self-improvement of uniform p-fatness was proved in this setting by Björn, MacManus and Shanmugalingam (2001).

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??
(2) Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??
(2) Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Notice that if in (1) we have $?=p$, then (2) is true by ALW!

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??
(2) Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Notice that if in (1) we have $?=p$, then (2) is true by ALW! Regarding (1):

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??
(2) Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Notice that if in (1) we have $?=p$, then (2) is true by ALW! Regarding (1):

- For usual p-Hardy, this only holds for $p=n=$?

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??
(2) Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Notice that if in (1) we have $?=p$, then (2) is true by ALW! Regarding (1):

- For usual p-Hardy, this only holds for $p=n=$?
- However, if Ω admits the p-Hardy, then Ω^{c} can not contain (isolated) parts of dimension $n-p$ (Koskela-Zhong, 2003)

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??
(2) Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Notice that if in (1) we have $?=p$, then (2) is true by ALW! Regarding (1):

- For usual p-Hardy, this only holds for $p=n=$?
- However, if Ω admits the p-Hardy, then Ω^{c} can not contain (isolated) parts of dimension $n-p$ (Koskela-Zhong, 2003)
- Moreover, it is easy to see that pointwise p-Hardy \Rightarrow pointwise p^{\prime}-Hardy for all $p^{\prime}>p$ (Hölder).

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??
(2) Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Notice that if in (1) we have $?=p$, then (2) is true by ALW! Regarding (1):

- For usual p-Hardy, this only holds for $p=n=$?
- However, if Ω admits the p-Hardy, then Ω^{c} can not contain (isolated) parts of dimension $n-p$ (Koskela-Zhong, 2003)
- Moreover, it is easy to see that pointwise p-Hardy \Rightarrow pointwise p^{\prime}-Hardy for all $p^{\prime}>p$ (Hölder).
- thus, if Ω admits the pointwise p-Hardy, then Ω^{c} can not contain (isolated) parts of dimension $\leq n-p$, so that Ω^{c} must be "quite fat"

Main questions:

(1) Pointwise p-Hardy \Rightarrow uniform ?-fatness ??
(2) Pointwise p-Hardy $\Rightarrow p$-Hardy ??

Notice that if in (1) we have $?=p$, then (2) is true by ALW! Regarding (1):

- For usual p-Hardy, this only holds for $p=n=$?
- However, if Ω admits the p-Hardy, then Ω^{c} can not contain (isolated) parts of dimension $n-p$ (Koskela-Zhong, 2003)
- Moreover, it is easy to see that pointwise p-Hardy \Rightarrow pointwise p^{\prime}-Hardy for all $p^{\prime}>p$ (Hölder).
- thus, if Ω admits the pointwise p-Hardy, then Ω^{c} can not contain (isolated) parts of dimension $\leq n-p$, so that Ω^{c} must be "quite fat"
- This makes (1) plausible, at least for some ?.

From pointwise Hardy to fatness, pt. 1

A partial answer to question 1. (in \mathbb{R}^{n}) was given in (L, PAMS 2008):

From pointwise Hardy to fatness, pt. 1

A partial answer to question 1. (in \mathbb{R}^{n}) was given in (L, PAMS 2008):
(1) Ω^{c} unif. p-fat

From pointwise Hardy to fatness, pt. 1

A partial answer to question 1. (in \mathbb{R}^{n}) was given in (L, PAMS 2008):
(1) Ω^{c} unif. p-fat
$\Rightarrow(2) \Omega$ admits the pointwise q-Hardy for some $q<p$

From pointwise Hardy to fatness, pt. 1

A partial answer to question 1. (in \mathbb{R}^{n}) was given in (L, PAMS 2008):
(1) Ω^{c} unif. p-fat
$\Rightarrow(2) \Omega$ admits the pointwise q-Hardy for some $q<p$
\Rightarrow (3) there exists $C>0$ so that for $\lambda=n-q$ we have the following inner boundary density condition:

$$
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega
$$

From pointwise Hardy to fatness, pt. 1

A partial answer to question 1. (in \mathbb{R}^{n}) was given in (L, PAMS 2008):
(1) Ω^{c} unif. p-fat
$\Rightarrow(2) \Omega$ admits the pointwise q-Hardy for some $q<p$
\Rightarrow (3) there exists $C>0$ so that for $\lambda=n-q$ we have the following inner boundary density condition:

$$
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega
$$

\Rightarrow (4) there exists $C>0$ so that for $\lambda=n-q$

$$
\mathcal{H}_{\infty}^{\lambda}\left(\Omega^{c} \cap B(w, r)\right) \geq C r^{\lambda} \quad \text { for every } w \in \Omega^{c} \text { and all } r>0 .
$$

From pointwise Hardy to fatness, pt. 1

A partial answer to question 1. (in \mathbb{R}^{n}) was given in (L, PAMS 2008):
(1) Ω^{c} unif. p-fat
$\Rightarrow(2) \Omega$ admits the pointwise q-Hardy for some $q<p$
\Rightarrow (3) there exists $C>0$ so that for $\lambda=n-q$ we have the following inner boundary density condition:

$$
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega
$$

$\Rightarrow(4)$ there exists $C>0$ so that for $\lambda=n-q>n-p$

$$
\mathcal{H}_{\infty}^{\lambda}\left(\Omega^{c} \cap B(w, r)\right) \geq C r^{\lambda} \quad \text { for every } w \in \Omega^{c} \text { and all } r>0 .
$$

$\Rightarrow(1) \Omega^{c}$ unif. p-fat.

From pointwise Hardy to fatness, pt. 1

A partial answer to question 1. (in \mathbb{R}^{n}) was given in (L, PAMS 2008):
(1) Ω^{c} unif. p-fat
$\Rightarrow(2) \Omega$ admits the pointwise q-Hardy for some $q<p$
\Rightarrow (3) there exists $C>0$ so that for $\lambda=n-q$ we have the following inner boundary density condition:

$$
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega
$$

$\Rightarrow(4)$ there exists $C>0$ so that for $\lambda=n-q>n-p$

$$
\mathcal{H}_{\infty}^{\lambda}\left(\Omega^{c} \cap B(w, r)\right) \geq C r^{\lambda} \quad \text { for every } w \in \Omega^{c} \text { and all } r>0
$$

$\Rightarrow(1) \Omega^{c}$ unif. p-fat.
(recall that $(1) \Rightarrow(2)$ and $(4) \Leftrightarrow(1)$ were previously known)

A closer look

So, in particular we obtain:
Ω admits the pointwise p-Hardy for some $1<p<\infty$ $\Rightarrow \Omega^{c}$ unif. p^{\prime}-fat for all $p^{\prime}>p$

A closer look

So, in particular we obtain:
Ω admits the pointwise p-Hardy for some $1<p<\infty$
$\Rightarrow \Omega^{c}$ unif. p^{\prime}-fat for all $p^{\prime}>p$
(thus almost the converse; would want Ω^{c} unif. p-fat)

A closer look

So, in particular we obtain:
Ω admits the pointwise p-Hardy for some $1<p<\infty$
$\Rightarrow \Omega^{c}$ unif. p^{\prime}-fat for all $p^{\prime}>p$
(thus almost the converse; would want Ω^{c} unif. p-fat)
On the other hand:
Ω admits the pointwise p-Hardy
\Rightarrow for $\lambda=n-p$

$$
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega
$$

A closer look

So, in particular we obtain:
Ω admits the pointwise p-Hardy for some $1<p<\infty$
$\Rightarrow \Omega^{c}$ unif. p^{\prime}-fat for all $p^{\prime}>p$
(thus almost the converse; would want Ω^{c} unif. p-fat)
On the other hand:
Ω admits the pointwise p-Hardy
\nLeftarrow for $\lambda=n-p$

$$
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega
$$

A closer look

So, in particular we obtain:
Ω admits the pointwise p-Hardy for some $1<p<\infty$
$\Rightarrow \Omega^{c}$ unif. p^{\prime}-fat for all $p^{\prime}>p$
(thus almost the converse; would want Ω^{c} unif. p-fat)
On the other hand:
Ω admits the pointwise p-Hardy
\Rightarrow for $\lambda=n-p$

$$
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega
$$

Idea of \Rightarrow : Let $B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega \subset \bigcup_{i=1}^{N} B\left(z_{i}, r_{i}\right)$ and use the pointwise p-Hardy for test function

$$
\varphi(y)=\min _{1 \leq i \leq N}\left\{1, r_{i}^{-1} d\left(y, B\left(z_{i}, 2 r_{i}\right)\right)\right\} \cdot(\text { cut-off })
$$

Inner boundary density and complement density

Let us take another look at the following density conditions:
There exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega \tag{2}
\end{equation*}
$$

Inner boundary density and complement density

Let us take another look at the following density conditions:
There exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega \tag{2}
\end{equation*}
$$

?? there exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}(B(w, r) \cap \partial \Omega) \geq C r^{\lambda} \text { for every } r>0, w \in \partial \Omega \tag{3}
\end{equation*}
$$

Inner boundary density and complement density

Let us take another look at the following density conditions:
There exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega \tag{2}
\end{equation*}
$$

\Leftarrow there exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}(B(w, r) \cap \partial \Omega) \geq C r^{\lambda} \text { for every } r>0, w \in \partial \Omega \tag{3}
\end{equation*}
$$

Inner boundary density and complement density

Let us take another look at the following density conditions:
There exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega \tag{2}
\end{equation*}
$$

\nRightarrow there exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}(B(w, r) \cap \partial \Omega) \geq C r^{\lambda} \text { for every } r>0, w \in \partial \Omega \tag{3}
\end{equation*}
$$

Inner boundary density and complement density

Let us take another look at the following density conditions:
There exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega \tag{2}
\end{equation*}
$$

\nRightarrow there exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}(B(w, r) \cap \partial \Omega) \geq C r^{\lambda} \text { for every } r>0, w \in \partial \Omega \tag{3}
\end{equation*}
$$

Reason: think of a "cusp"-domain in \mathbb{R}^{3} :
(2) holds for all $\lambda \leq 2$, but (3) only holds for $\lambda \leq 1$.

Inner boundary density and complement density

Let us take another look at the following density conditions:
There exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega \tag{2}
\end{equation*}
$$

\Rightarrow there exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B(w, r) \cap \Omega^{c}\right) \geq C r^{\lambda} \text { for every } r>0, w \in \Omega^{c}(\partial \Omega) \tag{3}
\end{equation*}
$$

Inner boundary density and complement density

Let us take another look at the following density conditions:
There exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B\left(x, 2 d_{\Omega}(x)\right) \cap \partial \Omega\right) \geq C d_{\Omega}(x)^{\lambda} \text { for every } x \in \Omega \tag{2}
\end{equation*}
$$

\Rightarrow there exists a constat $C>0$ so that

$$
\begin{equation*}
\mathcal{H}_{\infty}^{\lambda}\left(B(w, r) \cap \Omega^{c}\right) \geq C r^{\lambda} \text { for every } r>0, w \in \Omega^{c} \quad(\partial \Omega) \tag{3}
\end{equation*}
$$

Idea of \Rightarrow : If $\left|B(w, r) \cap \Omega^{c}\right| \geq \frac{1}{2}|B(w, r)|$, then (3) holds.
Otherwise use (2) with a covering argument to show that actually in this case

$$
\mathcal{H}_{\infty}^{\lambda}(B(w, r) \cap \partial \Omega) \geq C r^{\lambda} \text { for every } r>0, w \in \partial \Omega
$$

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
$\Rightarrow(3)$ inner boundary density for $\lambda=n-p$

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
\Rightarrow (3) inner boundary density for $\lambda=n-p$
\Rightarrow (4) complement density for $\lambda=n-p$

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
\Rightarrow (3) inner boundary density for $\lambda=n-p$
\Rightarrow (4) complement density for $\lambda=n-p$
\Rightarrow (5) unif. p^{\prime}-fatness for all $p^{\prime}>p$.

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
\Rightarrow (3) inner boundary density for $\lambda=n-p$
\Rightarrow (4) complement density for $\lambda=n-p$
$\Rightarrow(5)$ unif. p^{\prime}-fatness for all $p^{\prime}>p$.
Something is lost along the way. But where?

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
\Rightarrow (3) inner boundary density for $\lambda=n-p$
\Rightarrow (4) complement density for $\lambda=n-p$
$\Rightarrow(5)$ unif. p^{\prime}-fatness for all $p^{\prime}>p$.
Something is lost along the way. But where?

- $(4) \Rightarrow(5)$ does not hold for $p^{\prime}=p$. Is this where we lose the game?

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
\Rightarrow (3) inner boundary density for $\lambda=n-p$
\Rightarrow (4) complement density for $\lambda=n-p$
$\Rightarrow(5)$ unif. p^{\prime}-fatness for all $p^{\prime}>p$.
Something is lost along the way. But where?

- $(4) \Rightarrow(5)$ does not hold for $p^{\prime}=p$. Is this where we lose the game? Not really.

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
\Rightarrow (3) inner boundary density for $\lambda=n-p$
\Rightarrow (4) complement density for $\lambda=n-p$
$\Rightarrow(5)$ unif. p^{\prime}-fatness for all $p^{\prime}>p$.
Something is lost along the way. But where?

- $(4) \Rightarrow(5)$ does not hold for $p^{\prime}=p$. Is this where we lose the game? Not really.
- $(2) \Rightarrow(3)$ does not invert.

A moment of insight...

If we want to stay at the " p "-level, and not use the self-improvement, we get
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
\Rightarrow (3) inner boundary density for $\lambda=n-p$
\Rightarrow (4) complement density for $\lambda=n-p$
$\Rightarrow(5)$ unif. p^{\prime}-fatness for all $p^{\prime}>p$.
Something is lost along the way. But where?

- $(4) \Rightarrow(5)$ does not hold for $p^{\prime}=p$. Is this where we lose the game? Not really.
- $(2) \Rightarrow(3)$ does not invert. This is crucial.

Once we pass from capacity to Hausdorff content, something is inevitably lost.

.turns into a plan..

Hence, if we are trying to find a sharp relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;

.turns into a plan..

Hence, if we are trying to find a sharp relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity; that is, invert $(1) \Rightarrow(2)$.

...turns into a plan....and a positive result

Hence, if we are trying to find a sharp relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;
that is, invert $(1) \Rightarrow(2)$.
This we were able to do with Riikka Korte and Heli Tuominen:

...turns into a plan....and a positive result

Hence, if we are trying to find a sharp relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;
that is, invert (1) \Rightarrow (2).
This we were able to do with Riikka Korte and Heli Tuominen:
Theorem (KLT, 2009)
Let $1 \leq p<\infty$. A domain $\Omega \subset \mathbb{R}^{n}$ admits the pointwise p-Hardy inequality if and only if Ω^{c} is uniformly p-fat.
...turns into a plan....and a positive result

Hence, if we are trying to find a sharp relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;
that is, invert $(1) \Rightarrow(2)$.
This we were able to do with Riikka Korte and Heli Tuominen:
Theorem (KLT, 2009)
Let $1 \leq p<\infty$. A domain $\Omega \subset \mathbb{R}^{n}$ admits the pointwise p-Hardy inequality if and only if Ω^{c} is uniformly p-fat.

Notice here the inclusion of the case $p=1$; on the contrary, the 1 -Hardy inequality does not hold even in the smoothests of domains.

...turns into a plan....and a positive result

Hence, if we are trying to find a sharp relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;
that is, invert $(1) \Rightarrow(2)$.
This we were able to do with Riikka Korte and Heli Tuominen:
Theorem (KLT, 2009)
Let $1 \leq p<\infty$. A domain $\Omega \subset \mathbb{R}^{n}$ admits the pointwise p-Hardy inequality if and only if Ω^{c} is uniformly p-fat.

Notice here the inclusion of the case $p=1$; on the contrary, the 1 -Hardy inequality does not hold even in the smoothests of domains.
This result was proven also in the metric space setting. In addition, the previous content results from \mathbb{R}^{n} were generalized to metric spaces

...turns into a plan....and a positive result

Hence, if we are trying to find a sharp relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;
that is, invert $(1) \Rightarrow(2)$.
This we were able to do with Riikka Korte and Heli Tuominen:
Theorem (KLT, 2009)
Let $1 \leq p<\infty$. A domain $\Omega \subset \mathbb{R}^{n}$ admits the pointwise p-Hardy inequality if and only if Ω^{c} is uniformly p-fat.

Notice here the inclusion of the case $p=1$; on the contrary, the 1 -Hardy inequality does not hold even in the smoothests of domains.
This result was proven also in the metric space setting. In addition, the previous content results from \mathbb{R}^{n} were generalized to metric spaces (but for Hausdorff content of co-dimension p, corresponding to gauge function $\left.h(B(x, r))=\mu(B) r^{-p}\right)$

Consequences

The above theorem has some interesting consequences:

Consequences

The above theorem has some interesting consequences:
Corollary (LKT, 2009)
If $1<p<\infty$ and a domain $\Omega \subset \mathbb{R}^{n}$ admits the pointwise p-Hardy inequality, then there is $1<q<p$ so that Ω admits the pointwise q-Hardy inequality, too.

Consequences

The above theorem has some interesting consequences:

Corollary (LKT, 2009)

If $1<p<\infty$ and a domain $\Omega \subset \mathbb{R}^{n}$ admits the pointwise p-Hardy inequality, then there is $1<q<p$ so that Ω admits the pointwise q-Hardy inequality, too.

Corollary (LKT, 2009)

If $1<p<\infty$ and a domain $\Omega \subset \mathbb{R}^{n}$ admits the pointwise p-Hardy inequality, then Ω admits the usual p-Hardy inequality.

Consequences

The above theorem has some interesting consequences:

Corollary (LKT, 2009)

If $1<p<\infty$ and a domain $\Omega \subset \mathbb{R}^{n}$ admits the pointwise p-Hardy inequality, then there is $1<q<p$ so that Ω admits the pointwise q-Hardy inequality, too.

```
Corollary (LKT, 2009)
If 1<p<\infty and a domain \Omega\subset\mp@subsup{\mathbb{R}}{}{n}\mathrm{ admits the pointwise p-Hardy}
inequality, then \Omega}\mathrm{ admits the usual p-Hardy inequality.
```

(This finally justifies our notion of "pointwise p-Hardy inequality"!!)

A small side-step: Uniformly perfect sets

A set $E \subset \mathbb{R}^{n}$ is uniformly perfect, if $\# E \geq 2$ and there exists $c \geq 1$ such that for all $x \in E, r>0$

$$
E \cap B(x, c r) \backslash B(x, r) \neq \emptyset
$$

(if $E \backslash B(x, c r) \neq \emptyset$.)

A small side-step: Uniformly perfect sets

A set $E \subset \mathbb{R}^{n}$ is uniformly perfect, if $\# E \geq 2$ and there exists $c \geq 1$ such that for all $x \in E, r>0$

$$
E \cap B(x, c r) \backslash B(x, r) \neq \emptyset
$$

(if $E \backslash B(x, c r) \neq \emptyset$.)
For unbounded sets, uniform perfecness is equivalent to uniform n-fatness (Sugawa ($n=2$) 2003, Korte-Shanmugalingam, 2009; see also Järvi-Vuorinen 1996 for related results).

A small side-step: Uniformly perfect sets

A set $E \subset \mathbb{R}^{n}$ is uniformly perfect, if $\# E \geq 2$ and there exists $c \geq 1$ such that for all $x \in E, r>0$

$$
E \cap B(x, c r) \backslash B(x, r) \neq \emptyset
$$

(if $E \backslash B(x, c r) \neq \emptyset$.)
For unbounded sets, uniform perfecness is equivalent to uniform n-fatness (Sugawa ($n=2$) 2003, Korte-Shanmugalingam, 2009; see also Järvi-Vuorinen 1996 for related results).
Now, by the previous theorem we also have the equivalence:

A small side-step: Uniformly perfect sets

A set $E \subset \mathbb{R}^{n}$ is uniformly perfect, if $\# E \geq 2$ and there exists $c \geq 1$ such that for all $x \in E, r>0$

$$
E \cap B(x, c r) \backslash B(x, r) \neq \emptyset
$$

(if $E \backslash B(x, c r) \neq \emptyset$.)
For unbounded sets, uniform perfecness is equivalent to uniform n-fatness (Sugawa ($n=2$) 2003, Korte-Shanmugalingam, 2009; see also Järvi-Vuorinen 1996 for related results).
Now, by the previous theorem we also have the equivalence:
Ω admits the pointwise n-Hardy
$\Leftrightarrow \Omega^{c}$ is uniformly perfect and unbounded

A small side-step: Uniformly perfect sets

A set $E \subset \mathbb{R}^{n}$ is uniformly perfect, if $\# E \geq 2$ and there exists $c \geq 1$ such that for all $x \in E, r>0$

$$
E \cap B(x, c r) \backslash B(x, r) \neq \emptyset
$$

(if $E \backslash B(x, c r) \neq \emptyset$.)
For unbounded sets, uniform perfecness is equivalent to uniform n-fatness (Sugawa ($n=2$) 2003, Korte-Shanmugalingam, 2009; see also Järvi-Vuorinen 1996 for related results).
Now, by the previous theorem we also have the equivalence:
Ω admits the pointwise n-Hardy
$\Leftrightarrow \Omega^{c}$ is uniformly perfect and unbounded
($\Leftrightarrow \Omega$ admits n-Hardy)

A boundary Poincaré inequality

In the proof of [unif. p-fat \Rightarrow pointwise p-Hardy], the following Sobolev-type estimate due to Maz'ja plays a key role: for $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}|u|^{p} d x \leq \frac{C}{\operatorname{cap}_{p}\left(\frac{1}{2} B \cap\{u=0\}, B\right)} \int_{B}|\nabla u|^{p} d x \tag{4}
\end{equation*}
$$

A boundary Poincaré inequality

In the proof of [unif. p-fat \Rightarrow pointwise p-Hardy], the following Sobolev-type estimate due to Maz'ja plays a key role: for $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}|u|^{p} d x \leq \frac{C}{\operatorname{cap}_{p}\left(\frac{1}{2} B \cap\{u=0\}, B\right)} \int_{B}|\nabla u|^{p} d x . \tag{4}
\end{equation*}
$$

Now, if Ω^{c} is unif. p-fat and $u \in C_{0}^{\infty}(\Omega)$, it follows from (4) that

$$
\begin{equation*}
\int_{B}|u|^{p} d x \leq C r^{p} \int_{B}|\nabla u|^{p} d x \tag{5}
\end{equation*}
$$

(a "boundary Poincaré inequality")

A boundary Poincaré inequality

In the proof of [unif. p-fat \Rightarrow pointwise p-Hardy], the following Sobolev-type estimate due to Maz'ja plays a key role: for $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}|u|^{p} d x \leq \frac{C}{\operatorname{cap}_{p}\left(\frac{1}{2} B \cap\{u=0\}, B\right)} \int_{B}|\nabla u|^{p} d x . \tag{4}
\end{equation*}
$$

Now, if Ω^{c} is unif. p-fat and $u \in C_{0}^{\infty}(\Omega)$, it follows from (4) that

$$
\begin{equation*}
\int_{B}|u|^{p} d x \leq C r^{p} \int_{B}|\nabla u|^{p} d x \tag{5}
\end{equation*}
$$

(a "boundary Poincaré inequality")
This, combined with standard estimates (or a chaining argument), yields the pointwise p-Hardy inequality.

A boundary Poincaré inequality

In the proof of [unif. p-fat \Rightarrow pointwise p-Hardy], the following Sobolev-type estimate due to Maz'ja plays a key role: for $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}|u|^{p} d x \leq \frac{C}{\operatorname{cap}_{p}\left(\frac{1}{2} B \cap\{u=0\}, B\right)} \int_{B}|\nabla u|^{p} d x . \tag{4}
\end{equation*}
$$

Now, if Ω^{c} is unif. p-fat and $u \in C_{0}^{\infty}(\Omega)$, it follows from (4) that

$$
\begin{equation*}
\int_{B}|u|^{p} d x \leq C r^{p} \int_{B}|\nabla u|^{p} d x \tag{5}
\end{equation*}
$$

(a "boundary Poincaré inequality")
This, combined with standard estimates (or a chaining argument), yields the pointwise p-Hardy inequality.
Remark: Once we obtain [pointwise p-Hardy \Leftrightarrow unif. p-fat], we may conclude that the validity of the p-Poincaré inequality (5) for all $u \in C_{0}^{\infty}(\Omega)$ is equivalent with the two other " p "-properties

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise p-Hardy \Rightarrow unif. p-fatness of Ω^{c}] ?? Main ideas:

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise p-Hardy \Rightarrow unif. p-fatness of Ω^{c}] ?? Main ideas:

- Fix $w \in \partial \Omega, R>0$, let $B=B(w, R)$, and $v \in C_{0}^{\infty}(2 B)$ s.t. $0 \leq v \leq 1$ and $v \geq 1$ in $B \cap E$.

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise p-Hardy \Rightarrow unif. p-fatness of Ω^{c}] ?? Main ideas:

- Fix $w \in \partial \Omega, R>0$, let $B=B(w, R)$, and $v \in C_{0}^{\infty}(2 B)$ s.t. $0 \leq v \leq 1$ and $v \geq 1$ in $B \cap E$.
- If $f_{B} v \geq C$, we are done by Poincaré:

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise p-Hardy \Rightarrow unif. p-fatness of Ω^{c}] ??
Main ideas:

- Fix $w \in \partial \Omega, R>0$, let $B=B(w, R)$, and $v \in C_{0}^{\infty}(2 B)$ s.t.

$$
0 \leq v \leq 1 \text { and } v \geq 1 \text { in } B \cap E
$$

- If $f_{B} v \geq C$, we are done by Poincaré:

$$
1 \leq C f_{B} v \leq C R\left(f_{2 B}|\nabla v|^{p}\right)^{1 / p} \Rightarrow \int_{2 B}|\nabla v|^{p} \geq C R^{n-p}
$$

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise p-Hardy \Rightarrow unif. p-fatness of Ω^{c}] ??
Main ideas:

- Fix $w \in \partial \Omega, R>0$, let $B=B(w, R)$, and $v \in C_{0}^{\infty}(2 B)$ s.t.

$$
0 \leq v \leq 1 \text { and } v \geq 1 \text { in } B \cap E .
$$

- If $f_{B} v \geq C$, we are done by Poincaré:

$$
1 \leq C f_{B} v \leq C R\left(f_{2 B}|\nabla v|^{p}\right)^{1 / p} \Rightarrow \int_{2 B}|\nabla v|^{p} \geq C R^{n-p}
$$

- Otherwise $u=1-v$ must have values $\geq C_{1}$ in a large set $E \subset \frac{1}{4} B$; $|E| \geq C_{2}|B|$. Moreover, $u=0$ on $\Omega^{c} \cap B$.

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise p-Hardy \Rightarrow unif. p-fatness of Ω^{c}] ?? Main ideas:

- Fix $w \in \partial \Omega, R>0$, let $B=B(w, R)$, and $v \in C_{0}^{\infty}(2 B)$ s.t.

$$
0 \leq v \leq 1 \text { and } v \geq 1 \text { in } B \cap E .
$$

- If $f_{B} v \geq C$, we are done by Poincaré:

$$
1 \leq C f_{B} v \leq C R\left(f_{2 B}|\nabla v|^{p}\right)^{1 / p} \Rightarrow \int_{2 B}|\nabla v|^{p} \geq C R^{n-p}
$$

- Otherwise $u=1-v$ must have values $\geq C_{1}$ in a large set $E \subset \frac{1}{4} B$; $|E| \geq C_{2}|B|$. Moreover, $u=0$ on $\Omega^{c} \cap B$.
- \Rightarrow we may use the pw p-Hardy on points $x \in E$; let r_{x} be the corresponding "almost" best radii ($\left.0<r_{x}<2 d_{\Omega}(x)<R / 2\right)$.

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise p-Hardy \Rightarrow unif. p-fatness of Ω^{c}] ?? Main ideas:

- Fix $w \in \partial \Omega, R>0$, let $B=B(w, R)$, and $v \in C_{0}^{\infty}(2 B)$ s.t.

$$
0 \leq v \leq 1 \text { and } v \geq 1 \text { in } B \cap E .
$$

- If $f_{B} v \geq C$, we are done by Poincaré:

$$
1 \leq C f_{B} v \leq C R\left(f_{2 B}|\nabla v|^{p}\right)^{1 / p} \Rightarrow \int_{2 B}|\nabla v|^{p} \geq C R^{n-p}
$$

- Otherwise $u=1-v$ must have values $\geq C_{1}$ in a large set $E \subset \frac{1}{4} B$; $|E| \geq C_{2}|B|$. Moreover, $u=0$ on $\Omega^{c} \cap B$.
- \Rightarrow we may use the pw p-Hardy on points $x \in E$; let r_{x} be the corresponding "almost" best radii ($\left.0<r_{x}<2 d_{\Omega}(x)<R / 2\right)$.
- " $5 r$ "-covering thm. \Rightarrow we find $x_{i} \in E$ s.t. $B_{i}=B\left(x_{i}, r_{i}\right)$ are pairwise disjoint but $E \subset \bigcup 5 B_{i}$.

From pointwise Hardy to fatness, pt. 2...cont'd

- Thus $R^{n} \leq C|E| \leq C \sum r_{i}{ }^{n}$

From pointwise Hardy to fatness, pt. 2...cont'd

- Thus $R^{n} \leq C|E| \leq C \sum r_{i}{ }^{n}$
- On the other hand

$$
C_{1}^{p} \leq\left|u\left(x_{i}\right)\right|^{p} \leq C d_{\Omega}\left(x_{i}\right)^{p} M_{2 d_{\Omega}(x)}|\nabla u|^{p}(x) \leq C R^{p} r_{i}^{-n} \int_{B_{i}}|\nabla u|^{p}
$$

From pointwise Hardy to fatness, pt. 2...cont'd

- Thus $R^{n} \leq C|E| \leq C \sum r_{i}{ }^{n}$
- On the other hand

$$
\begin{gathered}
C_{1}^{p} \leq\left|u\left(x_{i}\right)\right|^{p} \leq C d_{\Omega}\left(x_{i}\right)^{p} M_{2 d_{\Omega}(x)}|\nabla u|^{p}(x) \leq C R^{p} r_{i}^{-n} \int_{B_{i}}|\nabla u|^{p} \\
\Rightarrow r_{i}^{n} \leq C R^{p} \int_{B_{i}}|\nabla u|^{p}
\end{gathered}
$$

From pointwise Hardy to fatness, pt. $2 \ldots$ cont'd

- Thus $R^{n} \leq C|E| \leq C \sum r_{i}{ }^{n}$
- On the other hand

$$
\begin{gathered}
C_{1}^{p} \leq\left|u\left(x_{i}\right)\right|^{p} \leq C d_{\Omega}\left(x_{i}\right)^{p} M_{2 d_{\Omega}(x)}|\nabla u|^{p}(x) \leq C R^{p} r_{i}^{-n} \int_{B_{i}}|\nabla u|^{p} \\
\Rightarrow r_{i}^{n} \leq C R^{p} \int_{B_{i}}|\nabla u|^{p}
\end{gathered}
$$

- Combining the above inequalities with the facts that $|\nabla u|=|\nabla v|$ in B and B_{i} 's are pairwise disjoint, we get

$$
R^{n} \leq C R^{p} \sum_{i=1}^{\infty} \int_{B_{i}}|\nabla u|^{p} \leq C R^{p} \int_{2 B}|\nabla v|^{p}
$$

From pointwise Hardy to fatness, pt. $2 \ldots$ cont'd

- Thus $R^{n} \leq C|E| \leq C \sum r_{i}{ }^{n}$
- On the other hand

$$
\begin{gathered}
C_{1}^{p} \leq\left|u\left(x_{i}\right)\right|^{p} \leq C d_{\Omega}\left(x_{i}\right)^{p} M_{2 d_{\Omega}(x)}|\nabla u|^{p}(x) \leq C R^{p} r_{i}^{-n} \int_{B_{i}}|\nabla u|^{p} \\
\Rightarrow r_{i}^{n} \leq C R^{p} \int_{B_{i}}|\nabla u|^{p}
\end{gathered}
$$

- Combining the above inequalities with the facts that $|\nabla u|=|\nabla v|$ in B and B_{i} 's are pairwise disjoint, we get

$$
R^{n} \leq C R^{p} \sum_{i=1}^{\infty} \int_{B_{i}}|\nabla u|^{p} \leq C R^{p} \int_{2 B}|\nabla v|^{p}
$$

- Hence $\operatorname{cap}_{p}\left(\Omega^{c} \cap \bar{B}, 2 B\right) \geq C R^{n-p}$, and so Ω^{c} is unif. p-fat.

Bibliography

A. Ancona, 'On strong barriers and an inequality of Hardy for domains in $\mathbb{R}^{n \prime}, J$. London Math. Soc. (2) 34 (1986), no. 2, 274-290.
P. Hajeasz, 'Pointwise Hardy inequalities', Proc. Amer. Math. Soc. 127 (1999), no. 2, 417-423.
G. H. Hardy, 'Notes on some points in the integral calculus (LX)', Messenger of Math. 54 (1925), 150-156.
J. Kinnunen and O. Martio, 'Hardy's inequalities for Sobolev functions', Math. Res. Lett. 4 (1997), no. 4, 489-500.
R. Korte, J. Lehrbäck and H. Tuominen, ‘The equivalence between pointwise Hardy inequalities and uniform fatness', preprint 2009, arXiv:0906.2086v1
P. Koskela and X. Zhong, 'Hardy's inequality and the boundary size', Proc. Amer.

Math. Soc. 131 (2003), no. 4, 1151-1158.
J. Lehrbäck, 'Pointwise Hardy inequalities and uniformly fat sets', Proc. Amer. Math. Soc. 136 (2008), no. 6, 2193-2200.
J. L. Lewis, 'Uniformly fat sets', Trans. Amer. Math. Soc. 308 (1988), no. 1, 177-196. J. Nečas, 'Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle', Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 305-326.
A. Wannebo, 'Hardy inequalities', Proc. Amer. Math. Soc. 109 (1990), 85-95.

The End

Thank you for your attention

