Pointwise Hardy inequalities and uniform fatness

Juha Lehrbäck partially based on a joined work with Riikka Korte and Heli Tuominen

University of Jyväskylä

ROMFIN 2009, 17.8.2009, Turku

Original inequalities

G.H. Hardy 1925:

$$\int_0^\infty \left(\frac{1}{x}\int_0^x f(t)\,dt\right)^p dx \leq \left(\frac{p}{p-1}\right)^p \int_0^\infty f(x)^p\,dx,$$

when $1 and <math>f \ge 0$ is measurable.

G.H. Hardy 1925:

$$\int_0^\infty \left(\frac{1}{x}\int_0^x f(t)\,dt\right)^p dx \leq \left(\frac{p}{p-1}\right)^p \int_0^\infty f(x)^p\,dx,$$

when $1 and <math>f \ge 0$ is measurable. Another form:

$$\int_0^\infty |u(x)|^p x^{-p} dx \leq \left(\frac{p}{p-1}\right)^p \int_0^\infty |u'(x)|^p dx,$$

where 1 and*u*is abs. continuous, <math>u(0) = 0.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Again:
$$\int_0^\infty |u(x)|^p x^{-p} dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty |u'(x)|^p dx,$$
where $1 and u is abs. continuous, $u(0) = 0$.$

<ロ> <同> <同> < 同> < 同>

Again:
$$\int_0^\infty |u(x)|^p x^{-p} dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty |u'(x)|^p dx$$
,
where $1 and u is abs. continuous, $u(0) = 0$.
This can be generalized to higher dimensions in many ways; we consider
the following form:$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 31

3 / 24

Again:
$$\int_0^\infty |u(x)|^p x^{-p} dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty |u'(x)|^p dx$$
,
where $1 and u is abs. continuous, $u(0) = 0$.
This can be generalized to higher dimensions in many ways; we consider
the following form:$

$$\int_{\Omega} |u(x)|^{p} d_{\Omega}(x)^{-p} dx \leq C \int_{\Omega} |\nabla u(x)|^{p} dx, \qquad (1)$$

where $\Omega \subset \mathbb{R}^n$ is open, $u \in C_0^{\infty}(\Omega)$, and $d_{\Omega}(x) = \operatorname{dist}(x, \partial \Omega)$.

・ロット (雪) (日) (日) (日)

Again:
$$\int_0^\infty |u(x)|^p x^{-p} dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty |u'(x)|^p dx,$$

where $1 and u is abs. continuous, $u(0) = 0$.$

This can be generalized to higher dimensions in many ways; we consider the following form:

$$\int_{\Omega} |u(x)|^p d_{\Omega}(x)^{-p} dx \leq C \int_{\Omega} |\nabla u(x)|^p dx, \qquad (1)$$

where $\Omega \subset \mathbb{R}^n$ is open, $u \in C_0^{\infty}(\Omega)$, and $d_{\Omega}(x) = \operatorname{dist}(x, \partial \Omega)$. If (1) holds for all $u \in C_0^{\infty}(\Omega)$ with the same constant $C = C(\Omega, p, \beta) > 0$, we say that $\Omega \subset \mathbb{R}^n$ admits the *p*-Hardy inequality.

Again:
$$\int_0^\infty |u(x)|^p x^{-p} dx \le \left(\frac{p}{p-1}\right)^p \int_0^\infty |u'(x)|^p dx$$
,
where $1 and u is abs. continuous, $u(0) = 0$.$

This can be generalized to higher dimensions in many ways; we consider the following form:

$$\int_{\Omega} |u(x)|^p d_{\Omega}(x)^{-p} dx \leq C \int_{\Omega} |\nabla u(x)|^p dx, \qquad (1)$$

where $\Omega \subset \mathbb{R}^n$ is open, $u \in C_0^{\infty}(\Omega)$, and $d_{\Omega}(x) = \operatorname{dist}(x, \partial \Omega)$. If (1) holds for all $u \in C_0^{\infty}(\Omega)$ with the same constant $C = C(\Omega, p, \beta) > 0$, we say that $\Omega \subset \mathbb{R}^n$ admits the *p*-Hardy inequality. (We do not care here about the optimality of the constant *C*)

・ロト ・同ト ・ヨト ・ヨト ・ シックへ

Theorem (Nečas 1962)

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. Then Ω admits the p-Hardy inequality for all 1 .

The "smoothness" of the boundary is however irrelevant here:

4 / 24

Theorem (Nečas 1962)

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. Then Ω admits the p-Hardy inequality for all 1 .

The "smoothness" of the boundary is however irrelevant here:

Theorem (Ancona 1986 (p = 2), Lewis 1988, Wannebo 1990)

Let $\Omega \subset \mathbb{R}^n$ be a domain such that the complement $\Omega^c = \mathbb{R}^n \setminus \Omega$ is uniformly p-fat. Then Ω admits the p-Hardy inequality.

(人間) とくぼう (生) ほう

Theorem (Nečas 1962)

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. Then Ω admits the p-Hardy inequality for all 1 .

The "smoothness" of the boundary is however irrelevant here:

Theorem (Ancona 1986 (p = 2), Lewis 1988, Wannebo 1990)

Let $\Omega \subset \mathbb{R}^n$ be a domain such that the complement $\Omega^c = \mathbb{R}^n \setminus \Omega$ is uniformly p-fat. Then Ω admits the p-Hardy inequality.

(If $\Omega \subset \mathbb{R}^n$ is bounded Lipschitz, then Ω^c is indeed uniformly *p*-fat for all 1)

・ロット (雪) (目) (日) (日)

A closed set $E \subset \mathbb{R}^n$ is uniformly *p*-fat, if it satisfies a uniform capacity density condition. Precisely:

- 3

イロト イポト イヨト イヨト

A closed set $E \subset \mathbb{R}^n$ is uniformly *p*-fat, if it satisfies a uniform capacity density condition. Precisely:

When $\Omega \subset \mathbb{R}^n$ is a domain and $E \subset \Omega$ is a compact subset, the *(variational) p-capacity* of *E* (relative to Ω) is

$$\operatorname{cap}_p(E,\Omega) = \inf \left\{ \int_{\Omega} |\nabla u|^p \, dx : u \in C_0^\infty(\Omega), \, u \ge 1 \text{ on } E
ight\}.$$

A closed set $E \subset \mathbb{R}^n$ is uniformly *p*-fat, if it satisfies a uniform capacity density condition. Precisely:

When $\Omega \subset \mathbb{R}^n$ is a domain and $E \subset \Omega$ is a compact subset, the *(variational) p-capacity* of *E* (relative to Ω) is

$$\operatorname{cap}_p(E,\Omega) = \inf \left\{ \int_\Omega |
abla u|^p \, dx : u \in C_0^\infty(\Omega), \, \, u \geq 1 \, \, ext{on} \, \, E
ight\}.$$

A closed set $E \subset \mathbb{R}^n$ is uniformly p-fat if

$$\operatorname{cap}_p\left(E\cap\overline{B}(x,r),B(x,2r)
ight)\geq C\operatorname{cap}_p\left(\overline{B}(x,r),B(x,2r)
ight)$$

for every $x \in E$ and all r > 0.

A closed set $E \subset \mathbb{R}^n$ is uniformly *p*-fat, if it satisfies a uniform capacity density condition. Precisely:

When $\Omega \subset \mathbb{R}^n$ is a domain and $E \subset \Omega$ is a compact subset, the *(variational) p-capacity* of *E* (relative to Ω) is

$$\operatorname{cap}_p(E,\Omega) = \inf \left\{ \int_\Omega |
abla u|^p \, dx : u \in C_0^\infty(\Omega), \, \, u \geq 1 \, \, ext{on} \, \, E
ight\}.$$

A closed set $E \subset \mathbb{R}^n$ is uniformly p-fat if

$$\operatorname{cap}_p\left(E\cap\overline{B}(x,r),B(x,2r)
ight)\geq C\operatorname{cap}_p\left(\overline{B}(x,r),B(x,2r)
ight)$$

for every $x \in E$ and all r > 0. Actually,

$$\operatorname{cap}_p(\overline{B}(x,r),B(x,2r))=C(n,p)r^{n-p}$$

for each ball $B(x, r) \subset \mathbb{R}^n$.

It is easy to see that if a set $E \subset \mathbb{R}^n$ is uniformly *p*-fat and q > p, then *E* is also uniformly *q*-fat.

It is easy to see that if a set $E \subset \mathbb{R}^n$ is uniformly *p*-fat and q > p, then *E* is also uniformly *q*-fat.

smaller $p \leftrightarrow fatter set$

- 4 同 6 4 日 6 4 日 6

It is easy to see that if a set $E \subset \mathbb{R}^n$ is uniformly *p*-fat and q > p, then *E* is also uniformly *q*-fat.

smaller $p \leftrightarrow fatter set$

On the other hand, we have a deep result by J. Lewis:

Theorem (Lewis 1988)

If $E \subset \mathbb{R}^n$ is uniformly p-fat for 1 , then there exists some <math>1 < q < p such that E is uniformly q-fat.

Uniform fatness: "geometric" characterization

Uniform fatness is equivalent to the following Hausdorff content density condition:

イロト 不得 とうせん きょうしゅ

Uniform fatness: "geometric" characterization

Uniform fatness is equivalent to the following Hausdorff content density condition:

There exists some $\lambda > n - p$ and a constant C > 0 such that

 $\mathcal{H}^{\lambda}_{\infty}ig(E\cap B(w,r)ig)\geq Cr^{\lambda} \quad ext{ for all } w\in E ext{ and all } r>0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Uniform fatness is equivalent to the following Hausdorff content density condition:

There exists some $\lambda > n - p$ and a constant C > 0 such that

$$\mathcal{H}^\lambda_\inftyig(E\cap B(w,r)ig)\geq Cr^\lambda$$
 for all $w\in E$ and all $r>0.$

Recall that the λ -Hausdorff content of $A \subset \mathbb{R}^n$ is defined by

$$\mathcal{H}_{\infty}^{\lambda}(A) = \inf \bigg\{ \sum_{i=1}^{\infty} r_i^{\lambda} : A \subset \bigcup_{i=1}^{\infty} B(z_i, r_i) \bigg\}.$$

・ロット (雪) (日) (日) (日)

Uniform fatness is equivalent to the following Hausdorff content density condition:

There exists some $\lambda > n - p$ and a constant C > 0 such that

$$\mathcal{H}^\lambda_\inftyig(E\cap B(w,r)ig)\geq Cr^\lambda$$
 for all $w\in E$ and all $r>0.$

Recall that the λ -Hausdorff content of $A \subset \mathbb{R}^n$ is defined by

$$\mathcal{H}^{\lambda}_{\infty}(A) = \inf \bigg\{ \sum_{i=1}^{\infty} r_i^{\lambda} : A \subset \bigcup_{i=1}^{\infty} B(z_i, r_i) \bigg\}.$$

It is now immediate that every non-empty $E \subset \mathbb{R}^n$ is unif. *p*-fat for all p > n, and an *m*-dimensional subspace $L \subset \mathbb{R}^n$ is is unif. *p*-fat for all p > n - m.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Pointwise *p*-Hardy inequality

Uniform *p*-fatness of the complement yields actually stronger(?) inequalities:

・ロット (雪) (日) (日) (日)

Uniform *p*-fatness of the complement yields actually stronger(?) inequalities:

Theorem (Hajłasz 1999, Kinnunen-Martio 1997)

Let $1 and assume that the complement of a domain <math>\Omega \subset \mathbb{R}^n$ is uniformly p-fat. Then there exists a constant C > 0 such that the pointwise p-Hardy inequality

$$|u(x)| \leq Cd_{\Omega}(x) \left(M_{2d_{\Omega}(x)}(|
abla u|^p)(x)
ight)^{1/p}$$

holds for all $u \in C_0^{\infty}(\Omega)$ at every $x \in \Omega$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Uniform *p*-fatness of the complement yields actually stronger(?) inequalities:

Theorem (Hajłasz 1999, Kinnunen-Martio 1997)

Let $1 and assume that the complement of a domain <math>\Omega \subset \mathbb{R}^n$ is uniformly p-fat. Then there exists a constant C > 0 such that the pointwise p-Hardy inequality

$$|u(x)| \leq Cd_{\Omega}(x) \left(M_{2d_{\Omega}(x)}(|
abla u|^{p})(x)
ight)^{1/p}$$

holds for all $u \in C_0^{\infty}(\Omega)$ at every $x \in \Omega$.

Here $M_R f$ is the usual restricted Hardy-Littlewood maximal function of $f \in L^1_{loc}(\mathbb{R}^n)$, defined by $M_R f(x) = \sup_{r \leq R} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

$$|u(x)| \leq Cd_{\Omega}(x) \left(M_{2d_{\Omega}(x)}(|\nabla u|^q)(x)\right)^{1/q}$$

イロト イポト イヨト イヨト 三日

$$|u(x)|^{p} \leq Cd_{\Omega}(x)^{p} (M_{2d_{\Omega}(x)}(|\nabla u|^{q})(x))^{p/q}$$

イロト イポト イヨト イヨト 三日

$|u(x)|^p d_{\Omega}(x)^{-p} \leq C \quad (M_{2d_{\Omega}(x)}(|\nabla u|^q)(x))^{p/q}$

・ロト ・ 戸 ・ ・ ヨ ト ・ 三 ・ う り ぐ つ

$$\int_{\Omega} |u(x)|^{p} d_{\Omega}(x)^{-p} dx \leq C \int_{\Omega} \left(M_{2d_{\Omega}(x)} \left(|\nabla u|^{q} \right)(x) \right)^{p/q} dx$$

$$egin{aligned} &\int_{\Omega}|u(x)|^{p}d_{\Omega}(x)^{-p}\,dx\leq C\int_{\Omega}\left(M_{2d_{\Omega}(x)}ig(|
abla u|^{q}ig)(x)ig)^{p/q}\,dx\ &\leq C\int_{\Omega}ig(|
abla u|^{q}ig)^{p/q}\,dx \end{aligned}$$

9 / 24

$$\begin{split} \int_{\Omega} |u(x)|^{p} d_{\Omega}(x)^{-p} \, dx &\leq C \int_{\Omega} \left(M_{2d_{\Omega}(x)} \big(|\nabla u|^{q} \big)(x) \big)^{p/q} \, dx \\ &\leq C \int_{\Omega} |\nabla u|^{p} \, dx \end{split}$$

- 4 同 6 4 日 6 4 日 6

- By Ancona–Lewis–Wannebo: Ω^c unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.
- By Hajłasz–Kinnunen–Martio: Ω^c unif. *p*-fat
 ⇒ Ω admits the pointwise *q*-H

- By Ancona–Lewis–Wannebo: Ω^c unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.
- By Hajłasz–Kinnunen–Martio:
 Ω^c unif. *p*-fat
 - $\Rightarrow \Omega$ admits the pointwise *p*-Hardy.
 - $\Rightarrow \Omega$ admits the p'-Hardy for all p' > p.

伺 ト イヨト イヨト

- By Ancona–Lewis–Wannebo: Ω^{c} unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.
- By Hajłasz–Kinnunen–Martio:
 Ω^c unif. p-fat
 - $\Rightarrow \Omega$ admits the pointwise *p*-Hardy.
 - $\Rightarrow \Omega$ admits the *p*'-Hardy for all *p*' > *p*.

伺 ト く ヨ ト く ヨ ト

- By Ancona–Lewis–Wannebo: Ω^c unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.
- By Hajłasz–Kinnunen–Martio:
 Ω^c unif. p-fat
 - $\Rightarrow \Omega$ admits the pointwise *p*-Hardy.
 - $\Rightarrow \Omega$ admits the p'-Hardy for all p' > p.

• By Ancona–Lewis–Wannebo: Ω^c unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.

• By Hajłasz–Kinnunen–Martio: Ω^{c} unif. p-fat $\Rightarrow \Omega^{c}$ unif. q-fat, q < p (Lewis) $\Rightarrow \Omega$ admits the pointwise p-Hardy. $\Rightarrow \Omega$ admits the p'-Hardy for all p' > p.

- 4 同 1 4 日 1 4 日 1 9 9 9 9 9 9

• By Ancona–Lewis–Wannebo: Ω^{c} unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.

By Hajłasz–Kinnunen–Martio: Ω^c unif. *p*-fat ⇒ Ω^c unif. *q*-fat, *q* < *p* (Lewis) ⇒ Ω admits the pointwise *q*-Hardy. ⇒ Ω admits the *p*'-Hardy for all *p*' > *p*

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ク ○ ○

- By Ancona–Lewis–Wannebo: Ω^{c} unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.
- By Hajłasz–Kinnunen–Martio: Ω^{c} unif. *p*-fat $\Rightarrow \Omega^{c}$ unif. *q*-fat, *q* < *p* (Lewis) $\Rightarrow \Omega$ admits the pointwise *q*-Hardy. $\Rightarrow \Omega$ admits the *p*-Hardy.

同下 イヨト イヨト ニヨ

• By Ancona–Lewis–Wannebo: Ω^{c} unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.

- By Hajłasz–Kinnunen–Martio:
 Ω^c unif. *p*-fat ⇒ Ω^c unif. *q*-fat, *q* < *p* (Lewis)
 ⇒ Ω admits the pointwise *q*-Hardy.
 ⇒ Ω admits the *p*-Hardy.
- Is it true that: Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

• By Ancona–Lewis–Wannebo: Ω^{c} unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.

- By Hajłasz–Kinnunen–Martio: Ω^{c} unif. *p*-fat $\Rightarrow \Omega^{c}$ unif. *q*-fat, q < p (Lewis) $\Rightarrow \Omega$ admits the pointwise *q*-Hardy. $\Rightarrow \Omega$ admits the *p*-Hardy.
- Is it true that: Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??
- We have: Ω^c unif. *n*-fat $\Leftrightarrow \Omega$ admits the *n*-Hardy (in \mathbb{R}^n). (Ancona n = 2, Lewis)

- 4 同 1 4 日 1 4 日 1 9 9 9 9 9 9

• By Ancona–Lewis–Wannebo: Ω^{c} unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.

- By Hajłasz–Kinnunen–Martio: Ω^{c} unif. *p*-fat $\Rightarrow \Omega^{c}$ unif. *q*-fat, q < p (Lewis) $\Rightarrow \Omega$ admits the pointwise *q*-Hardy. $\Rightarrow \Omega$ admits the *p*-Hardy.
- Is it true that: Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??
- We have: Ω^c unif. *n*-fat $\Leftrightarrow \Omega$ admits the *n*-Hardy (in \mathbb{R}^n). (Ancona n = 2, Lewis)
- But: Ω^c unif. *p*-fat ∉ Ω admits the *p*-Hardy if 1 < *p* < *n*. (a punctured ball B(0, *r*) \ {0} ⊂ ℝⁿ admits the *p*-Hardy for all *p* ≠ *n*, but is not unif. *p*-fat for *p* ≤ *n*.)

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

• By Ancona–Lewis–Wannebo: Ω^{c} unif. *p*-fat $\Rightarrow \Omega$ admits the *p*-Hardy.

- By Hajłasz–Kinnunen–Martio: Ω^{c} unif. *p*-fat $\Rightarrow \Omega^{c}$ unif. *q*-fat, q < p (Lewis) $\Rightarrow \Omega$ admits the pointwise *q*-Hardy. $\Rightarrow \Omega$ admits the *p*-Hardy.
- Is it true that: Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??
- We have: Ω^c unif. *n*-fat $\Leftrightarrow \Omega$ admits the *n*-Hardy (in \mathbb{R}^n). (Ancona n = 2, Lewis)
- But: Ω^c unif. *p*-fat ∉ Ω admits the *p*-Hardy if 1 < *p* < *n*. (a punctured ball B(0, *r*) \ {0} ⊂ ℝⁿ admits the *p*-Hardy for all *p* ≠ *n*, but is not unif. *p*-fat for *p* ≤ *n*.)
- Does the converse hold for pointwise inequalities ??

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

For simplicity, we only consider \mathbb{R}^n in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X = (X, d, \mu)$, provided that

For simplicity, we only consider \mathbb{R}^n in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X = (X, d, \mu)$, provided that

 μ is doubling: μ(2B) ≤ C_dμ(B) for each ball B ⊂ X (it follows from this that the "dimension" of X is at most s = log₂ C_d)

For simplicity, we only consider \mathbb{R}^n in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X = (X, d, \mu)$, provided that

- μ is doubling: $\mu(2B) \leq C_d \mu(B)$ for each ball $B \subset X$ (it follows from this that the "dimension" of X is at most $s = \log_2 C_d$)
- X supports a (weak) p-Poincaré inequality:

$$\int_{B} |u - u_{B}| \, d\mu \leq C_{P} r \Big(\int_{\tau B} g_{u}^{p} \, d\mu \Big)^{1/p}$$

whenever $u \in L^1_{loc}(X)$ and g_u is an (or a weak) upper gradient of u:

For simplicity, we only consider \mathbb{R}^n in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X = (X, d, \mu)$, provided that

- μ is doubling: $\mu(2B) \leq C_d \mu(B)$ for each ball $B \subset X$ (it follows from this that the "dimension" of X is at most $s = \log_2 C_d$)
- X supports a (weak) p-Poincaré inequality:

$$\int_{B} |u - u_{B}| \, d\mu \leq C_{P} r \Big(\int_{\tau B} g_{u}^{p} \, d\mu \Big)^{1/p}$$

whenever $u \in L^1_{loc}(X)$ and g_u is an (or a weak) upper gradient of u: For all (or *p*-almost all) curves γ joining $x, y \in X$

$$|u(x)-u(y)|\leq \int_{\gamma}g_u\,ds.$$

For simplicity, we only consider \mathbb{R}^n in this talk, but in fact all of the considrations and results hold (with minor modifications) in a complete metric measure space $X = (X, d, \mu)$, provided that

- μ is doubling: $\mu(2B) \leq C_d \mu(B)$ for each ball $B \subset X$ (it follows from this that the "dimension" of X is at most $s = \log_2 C_d$)
- X supports a (weak) p-Poincaré inequality:

$$\int_{B} |u - u_{B}| \, d\mu \leq C_{P} r \Big(\int_{\tau B} g_{u}^{p} \, d\mu \Big)^{1/p}$$

whenever $u \in L^1_{loc}(X)$ and g_u is an (or a weak) upper gradient of u: For all (or *p*-almost all) curves γ joining $x, y \in X$

$$|u(x)-u(y)|\leq \int_{\gamma}g_u\,ds.$$

Juha Lehrbäck (University of Jyväskylä)

Pointwise Hardy and fatness

1 Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

- **1** Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??
- **2** Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

- Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??
- **2** Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

Notice that if in (1) we have ?= p, then (2) is true by ALW!

- **1** Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??
- **2** Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

Notice that if in (1) we have ? = p, then (2) is true by ALW! Regarding (1):

- **1** Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??
- **2** Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

Notice that if in (1) we have ? = p, then (2) is true by ALW! Regarding (1):

• For usual *p*-Hardy, this only holds for p = n = ?

- 4 母 ト 4 ヨ ト - ヨ - シックの

- **1** Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??
- **2** Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

Notice that if in (1) we have ? = p, then (2) is true by ALW! Regarding (1):

- For usual *p*-Hardy, this only holds for p = n = ?
- However, if Ω admits the *p*-Hardy, then Ω^c can not contain (isolated) parts of dimension n p (Koskela–Zhong, 2003)

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

- **1** Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??
- **2** Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

Notice that if in (1) we have ? = p, then (2) is true by ALW! Regarding (1):

- For usual *p*-Hardy, this only holds for p = n = ?
- However, if Ω admits the *p*-Hardy, then Ω^c can not contain (isolated) parts of dimension n p (Koskela–Zhong, 2003)
- Moreover, it is easy to see that pointwise p-Hardy \Rightarrow pointwise p'-Hardy for all p' > p (Hölder).

・ロト ・ 「 ・ ・ ミト ・ ミト ・ 「 ・ う へ ()

- **1** Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??
- **2** Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

Notice that if in (1) we have ? = p, then (2) is true by ALW! Regarding (1):

- For usual *p*-Hardy, this only holds for p = n = ?
- However, if Ω admits the *p*-Hardy, then Ω^c can not contain (isolated) parts of dimension n p (Koskela–Zhong, 2003)
- Moreover, it is easy to see that pointwise p-Hardy \Rightarrow pointwise p'-Hardy for all p' > p (Hölder).
- thus, if Ω admits the pointwise *p*-Hardy, then Ω^c can not contain (isolated) parts of dimension ≤ *n* − *p*, so that Ω^c must be "quite fat"

- **1** Pointwise *p*-Hardy \Rightarrow uniform ?-fatness ??
- **2** Pointwise *p*-Hardy \Rightarrow *p*-Hardy ??

Notice that if in (1) we have ? = p, then (2) is true by ALW! Regarding (1):

- For usual *p*-Hardy, this only holds for p = n = ?
- However, if Ω admits the *p*-Hardy, then Ω^c can not contain (isolated) parts of dimension n p (Koskela–Zhong, 2003)
- Moreover, it is easy to see that pointwise p-Hardy \Rightarrow pointwise p'-Hardy for all p' > p (Hölder).
- thus, if Ω admits the pointwise *p*-Hardy, then Ω^c can not contain (isolated) parts of dimension ≤ *n* − *p*, so that Ω^c must be "quite fat"
- This makes (1) plausible, at least for some ?.

A partial answer to question 1. (in \mathbb{R}^n) was given in (L, PAMS 2008):

- 4 同 ト - 4 目 ト

A partial answer to question 1. (in \mathbb{R}^n) was given in (L, PAMS 2008): (1) Ω^c unif. *p*-fat

- 4 同 6 4 日 6 4 日 6 - 三日

A partial answer to question 1. (in \mathbb{R}^n) was given in (L, PAMS 2008):

- (1) Ω^c unif. *p*-fat
- \Rightarrow (2) Ω admits the pointwise *q*-Hardy for some *q* < *p*

(김희) 김 태어 김 태어 드

A partial answer to question 1. (in \mathbb{R}^n) was given in (L, PAMS 2008):

(1) Ω^c unif. *p*-fat

 \Rightarrow (2) Ω admits the pointwise *q*-Hardy for some *q* < *p*

 \Rightarrow (3) there exists C > 0 so that for $\lambda = n - q$ we have the following inner boundary density condition:

 $\mathcal{H}^{\lambda}_{\infty}\big(B(x,2d_{\Omega}(x))\cap\partial\Omega\big)\geq \textit{Cd}_{\Omega}(x)^{\lambda} \ \, \text{for every} \ x\in\Omega.$

A partial answer to question 1. (in \mathbb{R}^n) was given in (L, PAMS 2008):

(1) Ω^c unif. p-fat

 \Rightarrow (2) Ω admits the pointwise q-Hardy for some q < p

 \Rightarrow (3) there exists C > 0 so that for $\lambda = n - q$ we have the following inner boundary density condition:

 $\mathcal{H}^{\lambda}_{\infty}(B(x, 2d_{\Omega}(x)) \cap \partial \Omega) \geq Cd_{\Omega}(x)^{\lambda}$ for every $x \in \Omega$.

 \Rightarrow (4) there exists C > 0 so that for $\lambda = n - q$

 $\mathcal{H}^{\lambda}_{\infty}(\Omega^{c} \cap B(w, r)) \geq Cr^{\lambda}$ for every $w \in \Omega^{c}$ and all r > 0.

A partial answer to question 1. (in \mathbb{R}^n) was given in (L, PAMS 2008):

(1) Ω^c unif. *p*-fat

 \Rightarrow (2) Ω admits the pointwise *q*-Hardy for some *q* < *p*

 \Rightarrow (3) there exists C > 0 so that for $\lambda = n - q$ we have the following inner boundary density condition:

 $\mathcal{H}^{\lambda}_{\infty}\big(\textit{B}(x,2\textit{d}_{\Omega}(x))\cap\partial\Omega\big)\geq\textit{Cd}_{\Omega}(x)^{\lambda} \ \, \text{for every} \ x\in\Omega.$

 \Rightarrow (4) there exists C > 0 so that for $\lambda = n - q > n - p$

 $\mathcal{H}^{\lambda}_{\infty}(\Omega^{c} \cap B(w, r)) \geq Cr^{\lambda}$ for every $w \in \Omega^{c}$ and all r > 0. $\Rightarrow (1) \Omega^{c}$ unif. *p*-fat.

Juha Lehrbäck (University of Jyväskylä)

A partial answer to question 1. (in \mathbb{R}^n) was given in (L, PAMS 2008):

(1) Ω^c unif. *p*-fat

 \Rightarrow (2) Ω admits the pointwise *q*-Hardy for some *q* < *p*

 \Rightarrow (3) there exists C > 0 so that for $\lambda = n - q$ we have the following inner boundary density condition:

 $\mathcal{H}^{\lambda}_{\infty}\big(B(x,2d_{\Omega}(x))\cap\partial\Omega\big)\geq \textit{Cd}_{\Omega}(x)^{\lambda} \ \text{ for every } x\in\Omega.$

 \Rightarrow (4) there exists C > 0 so that for $\lambda = n - q > n - p$

 $\mathcal{H}^{\lambda}_{\infty}\big(\Omega^{c}\cap B(w,r)\big)\geq Cr^{\lambda}\quad \text{ for every }w\in\Omega^{c}\text{ and all }r>0.$

⇒ (1) Ω^c unif. *p*-fat. (recall that (1)⇒(2) and (4)⇔(1) were previously known)

So, in particular we obtain:

 Ω admits the pointwise p-Hardy for some $1 <math display="inline">\Rightarrow \ \Omega^c$ unif. p'-fat for all p' > p

So, in particular we obtain:

 Ω admits the pointwise *p*-Hardy for some 1 $<math>\Rightarrow \Omega^c$ unif. *p*'-fat for all *p*' > *p* (thus almost the converse; would want Ω^c unif. *p*-fat)

So, in particular we obtain:

 Ω admits the pointwise *p*-Hardy for some 1 $<math>\Rightarrow \Omega^c$ unif. *p*'-fat for all *p*' > *p* (thus almost the converse; would want Ω^c unif. *p*-fat)

On the other hand:

 Ω admits the pointwise *p*-Hardy

 \Rightarrow for $\lambda = n - p$

 $\mathcal{H}^{\lambda}_{\infty}\big(\textit{B}(x,2\textit{d}_{\Omega}(x))\cap\partial\Omega\big)\geq\textit{Cd}_{\Omega}(x)^{\lambda} \ \, \text{for every} \ x\in\Omega.$

14 / 24

So, in particular we obtain:

 Ω admits the pointwise *p*-Hardy for some 1 $<math>\Rightarrow \Omega^c$ unif. *p*'-fat for all *p*' > *p* (thus almost the converse; would want Ω^c unif. *p*-fat)

On the other hand:

 Ω admits the pointwise *p*-Hardy

 \Leftarrow for $\lambda = n - p$

 $\mathcal{H}^\lambda_\infty\big(\textit{B}(x,2\textit{d}_\Omega(x))\cap\partial\Omega\big)\geq\textit{Cd}_\Omega(x)^\lambda \ \text{ for every } x\in\Omega.$

14 / 24

So, in particular we obtain:

 Ω admits the pointwise *p*-Hardy for some 1 $<math>\Rightarrow \Omega^c$ unif. *p*'-fat for all *p*' > *p* (thus almost the converse; would want Ω^c unif. *p*-fat)

On the other hand: Ω admits the pointwise *p*-Hardy \Rightarrow for $\lambda = n - p$

$$\mathcal{H}^\lambda_\inftyig(\mathcal{B}(x,2d_\Omega(x))\cap\partial\Omegaig)\geq \mathit{Cd}_\Omega(x)^\lambda \;\; ext{for every}\; x\in\Omega.$$

Idea of \Rightarrow : Let $B(x, 2d_{\Omega}(x)) \cap \partial \Omega \subset \bigcup_{i=1}^{N} B(z_i, r_i)$ and use the pointwise *p*-Hardy for test function

$$\varphi(y) = \min_{1 \le i \le N} \left\{ 1, r_i^{-1} d(y, B(z_i, 2r_i)) \right\} \cdot (\text{cut-off})$$

Inner boundary density and complement density

Let us take another look at the following density conditions: There exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty} \big(B(x, 2d_{\Omega}(x)) \cap \partial \Omega \big) \geq Cd_{\Omega}(x)^{\lambda} \text{ for every } x \in \Omega.$ (2)

Inner boundary density and complement density

Let us take another look at the following density conditions: There exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty} \big(B(x, 2d_{\Omega}(x)) \cap \partial \Omega \big) \geq Cd_{\Omega}(x)^{\lambda} \text{ for every } x \in \Omega.$ (2)

?? there exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty}(B(w,r)\cap\partial\Omega)\geq Cr^{\lambda}$ for every $r>0,\;w\in\partial\Omega$ (3)

Inner boundary density and complement density

Let us take another look at the following density conditions: There exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty}ig(B(x,2d_{\Omega}(x))\cap\partial\Omegaig)\geq \mathit{Cd}_{\Omega}(x)^{\lambda} \ \ \text{for every} \ x\in\Omega.$ (2)

 \Leftarrow there exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty}(B(w,r)\cap\partial\Omega)\geq Cr^{\lambda}$ for every $r>0,\;w\in\partial\Omega$ (3)

Let us take another look at the following density conditions: There exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty}ig(B(x,2d_{\Omega}(x))\cap\partial\Omegaig)\geq \mathcal{C}d_{\Omega}(x)^{\lambda} \ \ \text{for every} \ x\in\Omega.$ (2)

 \Rightarrow there exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty}(B(w,r)\cap\partial\Omega)\geq Cr^{\lambda}$ for every $r>0,\;w\in\partial\Omega$ (3)

Let us take another look at the following density conditions: There exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty} \big(B(x, 2d_{\Omega}(x)) \cap \partial \Omega \big) \geq Cd_{\Omega}(x)^{\lambda} \text{ for every } x \in \Omega.$ (2)

 \Rightarrow there exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty}(B(w,r)\cap\partial\Omega)\geq Cr^{\lambda}$ for every $r>0,\;w\in\partial\Omega$ (3)

Reason: think of a "cusp"-domain in \mathbb{R}^3 : (2) holds for all $\lambda \leq 2$, but (3) only holds for $\lambda \leq 1$.

Let us take another look at the following density conditions: There exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty} \big(B(x, 2d_{\Omega}(x)) \cap \partial \Omega \big) \geq Cd_{\Omega}(x)^{\lambda} \text{ for every } x \in \Omega.$ (2)

 \Rightarrow there exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty}(B(w,r)\cap \Omega^{c}) \geq Cr^{\lambda}$ for every $r > 0, \ w \in \Omega^{c}$ $(\partial \Omega)$ (3)

Let us take another look at the following density conditions: There exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty} \big(B(x, 2d_{\Omega}(x)) \cap \partial \Omega \big) \geq Cd_{\Omega}(x)^{\lambda} \text{ for every } x \in \Omega.$ (2)

 \Rightarrow there exists a constat C > 0 so that

 $\mathcal{H}^{\lambda}_{\infty}(B(w,r)\cap \Omega^{c}) \geq Cr^{\lambda}$ for every $r > 0, w \in \Omega^{c}$ $(\partial \Omega)$ (3)

Idea of \Rightarrow : If $|B(w, r) \cap \Omega^c| \ge \frac{1}{2}|B(w, r)|$, then (3) holds. Otherwise use (2) with a covering argument to show that actually in this case

$$\mathcal{H}^\lambda_\inftyig(B(w,r)\cap\partial\Omegaig)\geq Cr^\lambda$$
 for every $r>0,\;w\in\partial\Omega.$

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

If we want to stay at the "p"-level, and not use the self-improvement, we get (1) unif. p-fatness \Rightarrow

イロト イポト イヨト イヨト

-

If we want to stay at the "p"-level, and not use the self-improvement, we get (1) unif a former (2) pointwise a block

```
(1) unif. p-fatness \Rightarrow (2) pointwise p-Hardy
```

イロト イポト イヨト ・ヨー

If we want to stay at the "p"-level, and not use the self-improvement, we get

- (1) unif. *p*-fatness \Rightarrow (2) pointwise *p*-Hardy
- \Rightarrow (3) inner boundary density for $\lambda = n p$

- 4 同 6 4 日 6 4 日 6 - 三日

If we want to stay at the "p"-level, and not use the self-improvement, we get

- (1) unif. *p*-fatness \Rightarrow (2) pointwise *p*-Hardy
- \Rightarrow (3) inner boundary density for $\lambda = n p$
- \Rightarrow (4) complement density for $\lambda = n p$

- 4 同 6 4 日 6 4 日 6 - 三日

If we want to stay at the "p"-level, and not use the self-improvement, we get

- (1) unif. *p*-fatness \Rightarrow (2) pointwise *p*-Hardy
- \Rightarrow (3) inner boundary density for $\lambda = n p$
- \Rightarrow (4) complement density for $\lambda = n p$
- \Rightarrow (5) unif. p'-fatness for all p' > p.

- 4 同 6 4 日 6 4 日 6 - 三日

If we want to stay at the "p"-level, and not use the self-improvement, we get

- (1) unif. *p*-fatness \Rightarrow (2) pointwise *p*-Hardy
- \Rightarrow (3) inner boundary density for $\lambda = n p$
- \Rightarrow (4) complement density for $\lambda = n p$
- \Rightarrow (5) unif. p'-fatness for all p' > p.

Something is lost along the way. But where?

If we want to stay at the "p"-level, and not use the self-improvement, we get

- (1) unif. *p*-fatness \Rightarrow (2) pointwise *p*-Hardy
- \Rightarrow (3) inner boundary density for $\lambda = n p$
- \Rightarrow (4) complement density for $\lambda = n p$
- \Rightarrow (5) unif. p'-fatness for all p' > p.

Something is lost along the way. But where?

• (4) \Rightarrow (5) does not hold for p' = p. Is this where we lose the game?

16 / 24

If we want to stay at the "p"-level, and not use the self-improvement, we get

- (1) unif. *p*-fatness \Rightarrow (2) pointwise *p*-Hardy
- \Rightarrow (3) inner boundary density for $\lambda = n p$
- \Rightarrow (4) complement density for $\lambda = n p$
- \Rightarrow (5) unif. p'-fatness for all p' > p.

Something is lost along the way. But where?

 (4)⇒(5) does not hold for p' = p. Is this where we lose the game? Not really.

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

If we want to stay at the "p"-level, and not use the self-improvement, we get

- (1) unif. *p*-fatness \Rightarrow (2) pointwise *p*-Hardy
- \Rightarrow (3) inner boundary density for $\lambda = n p$
- \Rightarrow (4) complement density for $\lambda = n p$
- \Rightarrow (5) unif. p'-fatness for all p' > p.

Something is lost along the way. But where?

- (4)⇒(5) does not hold for p' = p. Is this where we lose the game? Not really.
- $(2) \Rightarrow (3)$ does not invert.

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

If we want to stay at the "p"-level, and not use the self-improvement, we get

- (1) unif. *p*-fatness \Rightarrow (2) pointwise *p*-Hardy
- \Rightarrow (3) inner boundary density for $\lambda = n p$
- \Rightarrow (4) complement density for $\lambda = n p$
- \Rightarrow (5) unif. p'-fatness for all p' > p.

Something is lost along the way. But where?

- (4)⇒(5) does not hold for p' = p. Is this where we lose the game? Not really.
- $(2) \Rightarrow (3)$ does not invert. This is crucial.

Once we pass from capacity to Hausdorff content, something is inevitably lost.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

...turns into a plan..

Hence, if we are trying to find a *sharp* relation between uniform *p*-fatness and the pointwise *p*-Hardy inequality, we have to forget Hausdorff contents, and only use *p*-capacity;

...turns into a plan..

Hence, if we are trying to find a *sharp* relation between uniform *p*-fatness and the pointwise *p*-Hardy inequality, we have to forget Hausdorff contents, and only use *p*-capacity; that is, invert $(1) \Rightarrow (2)$.

Hence, if we are trying to find a *sharp* relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;

that is, invert (1) \Rightarrow (2).

This we were able to do with Riikka Korte and Heli Tuominen:

Hence, if we are trying to find a *sharp* relation between uniform *p*-fatness and the pointwise *p*-Hardy inequality, we have to forget Hausdorff contents, and only use *p*-capacity;

that is, invert $(1) \Rightarrow (2)$.

This we were able to do with Riikka Korte and Heli Tuominen:

Theorem (KLT, 2009)

Let $1 \leq p < \infty$. A domain $\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality if and only if Ω^c is uniformly p-fat.

17 / 24

Hence, if we are trying to find a *sharp* relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;

that is, invert $(1) \Rightarrow (2)$.

This we were able to do with Riikka Korte and Heli Tuominen:

Theorem (KLT, 2009)

Let $1 \leq p < \infty$. A domain $\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality if and only if Ω^c is uniformly p-fat.

Notice here the inclusion of the case p = 1; on the contrary, the 1-Hardy inequality does not hold even in the smoothests of domains.

Hence, if we are trying to find a *sharp* relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;

that is, invert $(1) \Rightarrow (2)$.

This we were able to do with Riikka Korte and Heli Tuominen:

Theorem (KLT, 2009)

Let $1 \leq p < \infty$. A domain $\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality if and only if Ω^c is uniformly p-fat.

Notice here the inclusion of the case p = 1; on the contrary, the 1-Hardy inequality does not hold even in the smoothests of domains. This result was proven also in the metric space setting. In addition, the previous content results from \mathbb{R}^n were generalized to metric spaces

17 / 24

Hence, if we are trying to find a *sharp* relation between uniform p-fatness and the pointwise p-Hardy inequality, we have to forget Hausdorff contents, and only use p-capacity;

that is, invert $(1) \Rightarrow (2)$.

This we were able to do with Riikka Korte and Heli Tuominen:

Theorem (KLT, 2009)

Let $1 \leq p < \infty$. A domain $\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality if and only if Ω^c is uniformly p-fat.

Notice here the inclusion of the case p = 1; on the contrary, the 1-Hardy inequality does not hold even in the smoothests of domains. This result was proven also in the metric space setting. In addition, the previous content results from \mathbb{R}^n were generalized to metric spaces (but for Hausdorff content of *co-dimension p*, corresponding to gauge function $h(B(x, r)) = \mu(B)r^{-p}$)

イロト 不得 とうせん きょうしゅ

Consequences

The above theorem has some interesting consequences:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Consequences

The above theorem has some interesting consequences:

Corollary (LKT, 2009)

If $1 and a domain <math>\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality, then there is 1 < q < p so that Ω admits the pointwise q-Hardy inequality, too.

伺 ト く ヨ ト く ヨ ト

The above theorem has some interesting consequences:

Corollary (LKT, 2009)

If $1 and a domain <math>\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality, then there is 1 < q < p so that Ω admits the pointwise q-Hardy inequality, too.

Corollary (LKT, 2009)

If $1 and a domain <math>\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality, then Ω admits the usual p-Hardy inequality.

- 人間 ト 人 ヨ ト - (日) - (日)

The above theorem has some interesting consequences:

Corollary (LKT, 2009)

If $1 and a domain <math>\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality, then there is 1 < q < p so that Ω admits the pointwise q-Hardy inequality, too.

Corollary (LKT, 2009)

If $1 and a domain <math>\Omega \subset \mathbb{R}^n$ admits the pointwise p-Hardy inequality, then Ω admits the usual p-Hardy inequality.

(This finally justifies our notion of "pointwise *p*-Hardy inequality" !!)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

A small side-step: Uniformly perfect sets

A set $E \subset \mathbb{R}^n$ is uniformly perfect, if $\#E \ge 2$ and there exists $c \ge 1$ such that for all $x \in E, r > 0$

 $E \cap B(x, cr) \setminus B(x, r) \neq \emptyset$

(if $E \setminus B(x, cr) \neq \emptyset$.)

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

$$E \cap B(x, cr) \setminus B(x, r) \neq \emptyset$$

(if $E \setminus B(x, cr) \neq \emptyset$.) For unbounded sets, uniform perfectness is equivalent to uniform *n*-fatness (Sugawa (n = 2) 2003, Korte–Shanmugalingam, 2009; see also Järvi–Vuorinen 1996 for related results).

$$E \cap B(x, cr) \setminus B(x, r) \neq \emptyset$$

(if $E \setminus B(x, cr) \neq \emptyset$.)

For unbounded sets, uniform perfecness is equivalent to uniform *n*-fatness (Sugawa (n = 2) 2003, Korte–Shanmugalingam, 2009; see also Järvi–Vuorinen 1996 for related results).

Now, by the previous theorem we also have the equivalence:

$$E \cap B(x, cr) \setminus B(x, r) \neq \emptyset$$

(if $E \setminus B(x, cr) \neq \emptyset$.)

For unbounded sets, uniform perfecness is equivalent to uniform *n*-fatness (Sugawa (n = 2) 2003, Korte–Shanmugalingam, 2009; see also Järvi–Vuorinen 1996 for related results).

Now, by the previous theorem we also have the equivalence:

 Ω admits the pointwise *n*-Hardy

 $\Leftrightarrow \Omega^c \text{ is uniformly perfect and unbounded}$

くロ とくぼ とくほ とく 見 とうしょ

$$E \cap B(x, cr) \setminus B(x, r) \neq \emptyset$$

(if $E \setminus B(x, cr) \neq \emptyset$.)

For unbounded sets, uniform perfecness is equivalent to uniform *n*-fatness (Sugawa (n = 2) 2003, Korte–Shanmugalingam, 2009; see also Järvi–Vuorinen 1996 for related results).

Now, by the previous theorem we also have the equivalence:

 Ω admits the pointwise *n*-Hardy

 $\Leftrightarrow \Omega^c \text{ is uniformly perfect and unbounded}$

 $(\Leftrightarrow \Omega \text{ admits } n\text{-Hardy})$

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

In the proof of [unif. *p*-fat \Rightarrow pointwise *p*-Hardy], the following Sobolev-type estimate due to Maz'ja plays a key role: for $u \in C^{\infty}(\mathbb{R}^n)$

$$\frac{1}{|B|} \int_{B} |u|^{p} dx \leq \frac{C}{\operatorname{cap}_{p}(\frac{1}{2}B \cap \{u=0\}, B)} \int_{B} |\nabla u|^{p} dx.$$
(4)

イロト イポト イヨト イヨト 三日

In the proof of [unif. *p*-fat \Rightarrow pointwise *p*-Hardy], the following Sobolev-type estimate due to Maz'ja plays a key role: for $u \in C^{\infty}(\mathbb{R}^n)$

$$\frac{1}{|B|} \int_{B} |u|^{p} dx \leq \frac{C}{\operatorname{cap}_{p}(\frac{1}{2}B \cap \{u=0\}, B)} \int_{B} |\nabla u|^{p} dx.$$
(4)

Now, if Ω^c is unif. *p*-fat and $u \in C_0^{\infty}(\Omega)$, it follows from (4) that

$$\int_{B} |u|^{p} dx \leq Cr^{p} \int_{B} |\nabla u|^{p} dx.$$
(5)

(a "boundary Poincaré inequality")

In the proof of [unif. *p*-fat \Rightarrow pointwise *p*-Hardy], the following Sobolev-type estimate due to Maz'ja plays a key role: for $u \in C^{\infty}(\mathbb{R}^n)$

$$\frac{1}{|B|} \int_{B} |u|^{p} dx \leq \frac{C}{\mathsf{cap}_{p}(\frac{1}{2}B \cap \{u=0\}, B)} \int_{B} |\nabla u|^{p} dx.$$
(4)

Now, if Ω^c is unif. *p*-fat and $u \in C_0^{\infty}(\Omega)$, it follows from (4) that

$$\int_{B} |u|^{p} dx \leq Cr^{p} \int_{B} |\nabla u|^{p} dx.$$
(5)

20 / 24

(a "boundary Poincaré inequality")

This, combined with standard estimates (or a chaining argument), yields the pointwise *p*-Hardy inequality.

In the proof of [unif. *p*-fat \Rightarrow pointwise *p*-Hardy], the following Sobolev-type estimate due to Maz'ja plays a key role: for $u \in C^{\infty}(\mathbb{R}^n)$

$$\frac{1}{|B|} \int_{B} |u|^{p} dx \leq \frac{C}{\operatorname{cap}_{p}(\frac{1}{2}B \cap \{u=0\}, B)} \int_{B} |\nabla u|^{p} dx.$$
(4)

Now, if Ω^c is unif. *p*-fat and $u \in C_0^\infty(\Omega)$, it follows from (4) that

$$\int_{B} |u|^{p} dx \leq Cr^{p} \int_{B} |\nabla u|^{p} dx.$$
(5)

(a "boundary Poincaré inequality")

This, combined with standard estimates (or a chaining argument), yields the pointwise *p*-Hardy inequality.

Remark: Once we obtain [pointwise *p*-Hardy \Leftrightarrow unif. *p*-fat], we may conclude that the validity of the *p*-Poincaré inequality (5) for all $u \in C_0^{\infty}(\Omega)$ is equivalent with the two other "*p*"-properties

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise *p*-Hardy \Rightarrow unif. *p*-fatness of Ω^c] ?? Main ideas:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

From pointwise Hardy to fatness, pt. 2

How to prove [pointwise *p*-Hardy \Rightarrow unif. *p*-fatness of Ω^c] ?? Main ideas:

• Fix $w \in \partial \Omega$, R > 0, let B = B(w, R), and $v \in C_0^{\infty}(2B)$ s.t. $0 \le v \le 1$ and $v \ge 1$ in $B \cap E$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

How to prove [pointwise *p*-Hardy \Rightarrow unif. *p*-fatness of Ω^c] ?? Main ideas:

- Fix $w \in \partial \Omega$, R > 0, let B = B(w, R), and $v \in C_0^{\infty}(2B)$ s.t. $0 \le v \le 1$ and $v \ge 1$ in $B \cap E$.
- If $\oint_B v \ge C$, we are done by Poincaré:

How to prove [pointwise *p*-Hardy \Rightarrow unif. *p*-fatness of Ω^c] ?? Main ideas:

- Fix $w \in \partial \Omega$, R > 0, let B = B(w, R), and $v \in C_0^{\infty}(2B)$ s.t. $0 \le v \le 1$ and $v \ge 1$ in $B \cap E$.
- If $\oint_B v \ge C$, we are done by Poincaré:

$$1 \le C \oint_{B} v \le CR \left(\oint_{2B} |\nabla v|^{p} \right)^{1/p} \ \Rightarrow \ \int_{2B} |\nabla v|^{p} \ge CR^{n-p}$$

How to prove [pointwise *p*-Hardy \Rightarrow unif. *p*-fatness of Ω^c] ?? Main ideas:

- Fix $w \in \partial \Omega$, R > 0, let B = B(w, R), and $v \in C_0^{\infty}(2B)$ s.t. $0 \le v \le 1$ and $v \ge 1$ in $B \cap E$.
- If $\oint_B v \ge C$, we are done by Poincaré:

$$1 \leq C \oint_{B} v \leq CR \left(\oint_{2B} |\nabla v|^{p} \right)^{1/p} \; \Rightarrow \; \int_{2B} |\nabla v|^{p} \geq CR^{n-p}$$

• Otherwise u = 1 - v must have values $\geq C_1$ in a large set $E \subset \frac{1}{4}B$; $|E| \geq C_2|B|$. Moreover, u = 0 on $\Omega^c \cap B$.

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ = のの⊙

How to prove [pointwise *p*-Hardy \Rightarrow unif. *p*-fatness of Ω^c] ?? Main ideas:

- Fix $w \in \partial \Omega$, R > 0, let B = B(w, R), and $v \in C_0^{\infty}(2B)$ s.t. $0 \le v \le 1$ and $v \ge 1$ in $B \cap E$.
- If $\oint_B v \ge C$, we are done by Poincaré:

$$1 \leq C \oint_{B} \mathsf{v} \leq C \mathsf{R} \left(\oint_{2B} |\nabla \mathsf{v}|^{p} \right)^{1/p} \; \Rightarrow \; \int_{2B} |\nabla \mathsf{v}|^{p} \geq C \mathsf{R}^{n-p}$$

- Otherwise u = 1 v must have values $\geq C_1$ in a large set $E \subset \frac{1}{4}B$; $|E| \geq C_2|B|$. Moreover, u = 0 on $\Omega^c \cap B$.
- ⇒ we may use the pw p-Hardy on points x ∈ E; let r_x be the corresponding "almost" best radii (0 < r_x < 2d_Ω(x) < R/2).

How to prove [pointwise *p*-Hardy \Rightarrow unif. *p*-fatness of Ω^c] ?? Main ideas:

- Fix $w \in \partial \Omega$, R > 0, let B = B(w, R), and $v \in C_0^{\infty}(2B)$ s.t. $0 \le v \le 1$ and $v \ge 1$ in $B \cap E$.
- If $\int_B v \ge C$, we are done by Poincaré:

$$1 \leq C \oint_{B} v \leq CR \left(\oint_{2B} |\nabla v|^{p} \right)^{1/p} \; \Rightarrow \; \int_{2B} |\nabla v|^{p} \geq CR^{n-p}$$

- Otherwise u = 1 v must have values $\geq C_1$ in a large set $E \subset \frac{1}{4}B$; $|E| \geq C_2|B|$. Moreover, u = 0 on $\Omega^c \cap B$.
- ⇒ we may use the pw p-Hardy on points x ∈ E; let r_x be the corresponding "almost" best radii (0 < r_x < 2d_Ω(x) < R/2).
- "5*r*"-covering thm. \Rightarrow we find $x_i \in E$ s.t. $B_i = B(x_i, r_i)$ are pairwise disjoint but $E \subset \bigcup 5B_i$.

• Thus $R^n \leq C|E| \leq C \sum r_i^n$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

- Thus $R^n \leq C|E| \leq C \sum r_i^n$
- On the other hand

$$C_1^p \leq |u(x_i)|^p \leq Cd_{\Omega}(x_i)^p M_{2d_{\Omega}(x)} |\nabla u|^p(x) \leq CR^p r_i^{-n} \int_{B_i} |\nabla u|^p$$

- Thus $R^n \leq C|E| \leq C \sum r_i^n$
- On the other hand

$$C_1^p \leq |u(x_i)|^p \leq Cd_{\Omega}(x_i)^p M_{2d_{\Omega}(x)} |\nabla u|^p(x) \leq CR^p r_i^{-n} \int_{B_i} |\nabla u|^p$$

$$\Rightarrow r_i^n \leq CR^p \int_{B_i} |\nabla u|^p$$

・ロット (雪) (日) (日) (日)

- Thus $R^n \leq C|E| \leq C \sum r_i^n$
- On the other hand

$$C_1^p \leq |u(x_i)|^p \leq Cd_{\Omega}(x_i)^p M_{2d_{\Omega}(x)} |\nabla u|^p(x) \leq CR^p r_i^{-n} \int_{B_i} |\nabla u|^p$$

$$\Rightarrow r_i^n \leq CR^p \int_{B_i} |\nabla u|^p$$

 Combining the above inequalities with the facts that |∇u| = |∇v| in B and B_i's are pairwise disjoint, we get

$$R^{n} \leq CR^{p} \sum_{i=1}^{\infty} \int_{B_{i}} |\nabla u|^{p} \leq CR^{p} \int_{2B} |\nabla v|^{p}$$

Juha Lehrbäck (University of Jyväskylä)

ROMFIN 2009 22 / 24

- Thus $R^n \leq C|E| \leq C \sum r_i^n$
- On the other hand

$$C_1^p \leq |u(x_i)|^p \leq Cd_{\Omega}(x_i)^p M_{2d_{\Omega}(x)} |\nabla u|^p(x) \leq CR^p r_i^{-n} \int_{B_i} |\nabla u|^p$$

$$\Rightarrow r_i^n \leq CR^p \int_{B_i} |\nabla u|^p$$

• Combining the above inequalities with the facts that $|\nabla u| = |\nabla v|$ in *B* and *B*_i's are pairwise disjoint, we get

$$R^{n} \leq CR^{p} \sum_{i=1}^{\infty} \int_{B_{i}} |\nabla u|^{p} \leq CR^{p} \int_{2B} |\nabla v|^{p}$$

• Hence $\operatorname{cap}_p(\Omega^c \cap \overline{B}, 2B) \ge CR^{n-p}$, and so Ω^c is unif. *p*-fat.

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Bibliography

A. ANCONA, 'On strong barriers and an inequality of Hardy for domains in \mathbb{R}^{n} ', *J.* London Math. Soc. (2) 34 (1986), no. 2, 274–290.

P. HAJŁASZ, 'Pointwise Hardy inequalities', Proc. Amer. Math. Soc. 127 (1999), no. 2, 417–423.

 $\rm G.~H.~HARDY,$ 'Notes on some points in the integral calculus (LX)', Messenger of Math. 54 (1925), 150–156.

J. KINNUNEN AND O. MARTIO, 'Hardy's inequalities for Sobolev functions', *Math. Res. Lett.* 4 (1997), no. 4, 489–500.

R. KORTE, J. LEHRBÄCK AND H. TUOMINEN, 'The equivalence between pointwise Hardy inequalities and uniform fatness', preprint 2009, arXiv:0906.2086v1

P. KOSKELA AND X. ZHONG, 'Hardy's inequality and the boundary size', *Proc. Amer. Math. Soc.* 131 (2003), no. 4, 1151–1158.

J. LEHRBÄCK, 'Pointwise Hardy inequalities and uniformly fat sets', *Proc. Amer. Math.* Soc. 136 (2008), no. 6, 2193–2200.

J. L. LEWIS, 'Uniformly fat sets', *Trans. Amer. Math. Soc.* 308 (1988), no. 1, 177–196. J. NEČAS, 'Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle', *Ann. Scuola Norm. Sup. Pisa* (3) 16 (1962), 305–326.

A. WANNEBO, 'Hardy inequalities', Proc. Amer. Math. Soc. 109 (1990), 85–95.

◆□ > ◆□ > ◆三 > ◆三 > → □ → ○○○

Thank you for your attention

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-2