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Original inequalities

G.H. Hardy 1925:∫ ∞

0

(
1

x

∫ x

0
f (t) dt

)p

dx ≤
(

p

p − 1

)p ∫ ∞

0
f (x)p dx ,

when 1 < p < ∞ and f ≥ 0 is measurable.

Another form:∫ ∞

0
|u(x)|p x−p dx ≤

(
p

p − 1

)p ∫ ∞

0
|u′(x)|p dx ,

where 1 < p < ∞ and u is abs. continuous, u(0) = 0.
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Hardy inequalities in Rn

Again:
∫∞
0 |u(x)|p x−p dx ≤

(
p

p−1

)p ∫∞
0 |u′(x)|p dx ,

where 1 < p < ∞ and u is abs. continuous, u(0) = 0.

This can be generalized to higher dimensions in many ways; we consider
the following form:∫

Ω
|u(x)|p dΩ(x)−p dx ≤ C

∫
Ω
|∇u(x)|p dx , (1)

where Ω ⊂ Rn is open, u ∈ C∞
0 (Ω), and dΩ(x) = dist(x , ∂Ω).

If (1) holds for all u ∈ C∞
0 (Ω) with the same constant

C = C (Ω, p, β) > 0, we say that Ω ⊂ Rn admits the p-Hardy inequality.
(We do not care here about the optimality of the constant C )
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Sufficient conditions

Theorem (Nečas 1962)

Let Ω ⊂ Rn be a bounded Lipschitz domain. Then Ω admits the p-Hardy
inequality for all 1 < p < ∞.

The “smoothness” of the boundary is however irrelevant here:

Theorem (Ancona 1986 (p = 2), Lewis 1988, Wannebo 1990)

Let Ω ⊂ Rn be a domain such that the complement Ωc = Rn \ Ω is
uniformly p-fat. Then Ω admits the p-Hardy inequality.

(If Ω ⊂ Rn is bounded Lipschitz, then Ωc is indeed uniformly p-fat for all
1 < p < ∞)
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Juha Lehrbäck (University of Jyväskylä) Pointwise Hardy and fatness ROMFIN 2009 4 / 24



Uniform fatness

A closed set E ⊂ Rn is uniformly p-fat, if it satisfies a uniform capacity
density condition. Precisely:

When Ω ⊂ Rn is a domain and E ⊂ Ω is a compact subset, the
(variational) p-capacity of E (relative to Ω) is

capp(E , Ω) = inf

{∫
Ω
|∇u|p dx : u ∈ C∞

0 (Ω), u ≥ 1 on E

}
.

A closed set E ⊂ Rn is uniformly p-fat if

capp

(
E ∩ B(x , r),B(x , 2r)

)
≥ C capp

(
B(x , r),B(x , 2r)

)
for every x ∈ E and all r > 0.
Actually,

capp(B(x , r),B(x , 2r)) = C (n, p)rn−p

for each ball B(x , r) ⊂ Rn.
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Juha Lehrbäck (University of Jyväskylä) Pointwise Hardy and fatness ROMFIN 2009 5 / 24



Uniform fatness: self-improvement

It is easy to see that if a set E ⊂ Rn is uniformly p-fat and q > p, then E
is also uniformly q-fat.

smaller p ↔ fatter set

On the other hand, we have a deep result by J. Lewis:

Theorem (Lewis 1988)

If E ⊂ Rn is uniformly p-fat for 1 < p < ∞, then there exists some
1 < q < p such that E is uniformly q-fat.
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Uniform fatness: “geometric” characterization

Uniform fatness is equivalent to the following Hausdorff content density
condition:

There exists some λ > n − p and a constant C > 0 such that

Hλ
∞

(
E ∩ B(w , r)

)
≥ Crλ for all w ∈ E and all r > 0.

Recall that the λ-Hausdorff content of A ⊂ Rn is defined by

Hλ
∞(A) = inf

{ ∞∑
i=1

rλ
i : A ⊂

∞⋃
i=1

B(zi , ri )

}
.

It is now immediate that every non-empty E ⊂ Rn is unif. p-fat for all
p > n, and an m-dimensional subspace L ⊂ Rn is is unif. p-fat for all
p > n −m.
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Pointwise p-Hardy inequality

Uniform p-fatness of the complement yields actually stronger(?)
inequalities:

Theorem (Haj lasz 1999, Kinnunen-Martio 1997)

Let 1 < p < ∞ and assume that the complement of a domain Ω ⊂ Rn is
uniformly p-fat. Then there exists a constant C > 0 such that the
pointwise p-Hardy inequality

|u(x)| ≤ CdΩ(x)
(
M2dΩ(x)

(
|∇u|p

)
(x)

)1/p

holds for all u ∈ C∞
0 (Ω) at every x ∈ Ω.

Here MR f is the usual restricted Hardy-Littlewood maximal function of
f ∈ L1

loc(Rn), defined by MR f (x) = supr≤R
1

|B(x ,r)|
∫
B(x ,r) |f (y)| dy
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Pointwise implies integral

By the maximal theorem it is easy to see that a pointwise q-Hardy
inequality (4) implies the usual p-Hardy inequality for all p > q:
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∫
Ω
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dx

≤ C
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Revision and questions:

By Ancona–Lewis–Wannebo:
Ωc unif. p-fat ⇒ Ω admits the p-Hardy.

By Haj lasz–Kinnunen–Martio:
Ωc unif. p-fat

⇒ Ωc unif. q-fat, q < p (Lewis)

⇒ Ω admits the pointwise q-Hardy.
⇒ Ω admits the p-Hardy.

Is it true that: Pointwise p-Hardy ⇒ p-Hardy ??

We have: Ωc unif. n-fat ⇔ Ω admits the n-Hardy (in Rn).
(Ancona n = 2, Lewis)

But: Ωc unif. p-fat : Ω admits the p-Hardy if 1 < p < n.
(a punctured ball B(0, r) \ {0} ⊂ Rn admits the p-Hardy for all
p 6= n, but is not unif. p-fat for p ≤ n.)

Does the converse hold for pointwise inequalities ??
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Juha Lehrbäck (University of Jyväskylä) Pointwise Hardy and fatness ROMFIN 2009 10 / 24



Revision and questions:

By Ancona–Lewis–Wannebo:
Ωc unif. p-fat ⇒ Ω admits the p-Hardy.

By Haj lasz–Kinnunen–Martio:
Ωc unif. p-fat ⇒ Ωc unif. q-fat, q < p (Lewis)
⇒ Ω admits the pointwise q-Hardy.
⇒ Ω admits the p-Hardy.

Is it true that: Pointwise p-Hardy ⇒ p-Hardy ??

We have: Ωc unif. n-fat ⇔ Ω admits the n-Hardy (in Rn).
(Ancona n = 2, Lewis)

But: Ωc unif. p-fat : Ω admits the p-Hardy if 1 < p < n.
(a punctured ball B(0, r) \ {0} ⊂ Rn admits the p-Hardy for all
p 6= n, but is not unif. p-fat for p ≤ n.)

Does the converse hold for pointwise inequalities ??
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Metric spaces

For simplicity, we only consider Rn in this talk, but in fact all of the
considrations and results hold (with minor modifications) in a complete
metric measure space X = (X , d , µ), provided that

µ is doubling: µ(2B) ≤ Cdµ(B) for each ball B ⊂ X
(it follows from this that the “dimension” of X is at most
s = log2 Cd)

X supports a (weak) p-Poincaré inequality:∫
B
|u − uB | dµ ≤ CP r

(∫
τB

gp
u dµ

)1/p

whenever u ∈ L1
loc(X ) and gu is an (or a weak) upper gradient of u:

For all (or p-almost all) curves γ joining x , y ∈ X

|u(x)− u(y)| ≤
∫

γ
gu ds.

In particular, the self-improvement of uniform p-fatness was proved in this
setting by Björn, MacManus and Shanmugalingam (2001).
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Main questions:

1 Pointwise p-Hardy ⇒ uniform ?-fatness ??

2 Pointwise p-Hardy ⇒ p-Hardy ??

Notice that if in (1) we have ?= p, then (2) is true by ALW!
Regarding (1):

For usual p-Hardy, this only holds for p = n =?

However, if Ω admits the p-Hardy, then Ωc can not contain (isolated)
parts of dimension n − p (Koskela–Zhong, 2003)

Moreover, it is easy to see that
pointwise p-Hardy ⇒ pointwise p′-Hardy for all p′ > p (Hölder).

thus, if Ω admits the pointwise p-Hardy, then Ωc can not contain
(isolated) parts of dimension ≤ n− p, so that Ωc must be “quite fat”

This makes (1) plausible, at least for some ?.
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From pointwise Hardy to fatness, pt. 1

A partial answer to question 1. (in Rn) was given in (L, PAMS 2008):

(1) Ωc unif. p-fat
⇒ (2) Ω admits the pointwise q-Hardy for some q < p
⇒ (3) there exists C > 0 so that for λ = n − q we have the following
inner boundary density condition:

Hλ
∞

(
B(x , 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω.

⇒ (4) there exists C > 0 so that for λ = n − q

> n − p

Hλ
∞

(
Ωc ∩ B(w , r)

)
≥ Crλ for every w ∈ Ωc and all r > 0.

⇒ (1) Ωc unif. p-fat.
(recall that (1)⇒(2) and (4)⇔(1) were previously known)
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⇒ (2) Ω admits the pointwise q-Hardy for some q < p
⇒ (3) there exists C > 0 so that for λ = n − q we have the following
inner boundary density condition:

Hλ
∞

(
B(x , 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω.

⇒ (4) there exists C > 0 so that for λ = n − q > n − p

Hλ
∞

(
Ωc ∩ B(w , r)

)
≥ Crλ for every w ∈ Ωc and all r > 0.

⇒ (1) Ωc unif. p-fat.
(recall that (1)⇒(2) and (4)⇔(1) were previously known)
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A closer look

So, in particular we obtain:

Ω admits the pointwise p-Hardy for some 1 < p < ∞
⇒ Ωc unif. p′-fat for all p′ > p

(thus almost the converse; would want Ωc unif. p-fat)

On the other hand:
Ω admits the pointwise p-Hardy
⇒ for λ = n − p

Hλ
∞

(
B(x , 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω.

Idea of ⇒: Let B(x , 2dΩ(x)) ∩ ∂Ω ⊂
⋃N

i=1 B(zi , ri ) and use the pointwise
p-Hardy for test function

ϕ(y) = min
1≤i≤N

{
1, r−1

i d(y ,B(zi , 2ri ))
}
· (cut-off)
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Inner boundary density and complement density

Let us take another look at the following density conditions:

There exists a constat C > 0 so that

Hλ
∞

(
B(x , 2dΩ(x)) ∩ ∂Ω

)
≥ CdΩ(x)λ for every x ∈ Ω. (2)

⇐ there exists a constat C > 0 so that

Hλ
∞

(
B(w , r) ∩ ∂Ω

)
≥ Crλ for every r > 0, w ∈ ∂Ω

(∂Ω)

(3)
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; there exists a constat C > 0 so that

Hλ
∞

(
B(w , r) ∩ ∂Ω

)
≥ Crλ for every r > 0, w ∈ ∂Ω

(∂Ω)

(3)

Reason: think of a “cusp”-domain in R3:
(2) holds for all λ ≤ 2, but (3) only holds for λ ≤ 1.
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⇒ there exists a constat C > 0 so that

Hλ
∞

(
B(w , r) ∩ Ωc

)
≥ Crλ for every r > 0, w ∈ Ωc (∂Ω) (3)

Idea of ⇒: If |B(w , r) ∩ Ωc | ≥ 1
2 |B(w , r)|, then (3) holds.

Otherwise use (2) with a covering argument to show that actually in this
case

Hλ
∞

(
B(w , r) ∩ ∂Ω

)
≥ Crλ for every r > 0, w ∈ ∂Ω.
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A moment of insight...

If we want to stay at the “p”-level, and not use the self-improvement, we
get
(1) unif. p-fatness ⇒

(2) pointwise p-Hardy
⇒ (3) inner boundary density for λ = n − p
⇒ (4) complement density for λ = n − p
⇒ (5) unif. p′-fatness for all p′ > p.
Something is lost along the way. But where?

(4)⇒(5) does not hold for p′ = p. Is this where we lose the game?
Not really.

(2)⇒(3) does not invert. This is crucial.

Once we pass from capacity to Hausdorff content, something is inevitably
lost.
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...turns into a plan..

..and a positive result

Hence, if we are trying to find a sharp relation between uniform p-fatness
and the pointwise p-Hardy inequality, we have to forget Hausdorff
contents, and only use p-capacity;

that is, invert (1) ⇒ (2).
This we were able to do with Riikka Korte and Heli Tuominen:

Theorem (KLT, 2009)

Let 1 ≤ p < ∞. A domain Ω ⊂ Rn admits the pointwise p-Hardy
inequality if and only if Ωc is uniformly p-fat.

Notice here the inclusion of the case p = 1; on the contrary, the 1-Hardy
inequality does not hold even in the smoothests of domains.
This result was proven also in the metric space setting. In addition, the
previous content results from Rn were generalized to metric spaces
(but for Hausdorff content of co-dimension p, corresponding to gauge
function h(B(x , r)) = µ(B)r−p)
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Consequences

The above theorem has some interesting consequences:

Corollary (LKT, 2009)

If 1 < p < ∞ and a domain Ω ⊂ Rn admits the pointwise p-Hardy
inequality, then there is 1 < q < p so that Ω admits the pointwise q-Hardy
inequality, too.

Corollary (LKT, 2009)

If 1 < p < ∞ and a domain Ω ⊂ Rn admits the pointwise p-Hardy
inequality, then Ω admits the usual p-Hardy inequality.

(This finally justifies our notion of
“pointwise p-Hardy inequality”!!)
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“pointwise p-Hardy inequality”!!)
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A small side-step: Uniformly perfect sets

A set E ⊂ Rn is uniformly perfect, if #E ≥ 2 and there exists c ≥ 1 such
that for all x ∈ E , r > 0

E ∩ B(x , cr) \ B(x , r) 6= ∅

(if E \ B(x , cr) 6= ∅.)

For unbounded sets, uniform perfecness is equivalent to uniform n-fatness
(Sugawa (n = 2) 2003, Korte–Shanmugalingam, 2009; see also
Järvi–Vuorinen 1996 for related results).
Now, by the previous theorem we also have the equivalence:
Ω admits the pointwise n-Hardy
⇔ Ωc is uniformly perfect and unbounded
(⇔ Ω admits n-Hardy)

Juha Lehrbäck (University of Jyväskylä) Pointwise Hardy and fatness ROMFIN 2009 19 / 24



A small side-step: Uniformly perfect sets

A set E ⊂ Rn is uniformly perfect, if #E ≥ 2 and there exists c ≥ 1 such
that for all x ∈ E , r > 0

E ∩ B(x , cr) \ B(x , r) 6= ∅

(if E \ B(x , cr) 6= ∅.)
For unbounded sets, uniform perfecness is equivalent to uniform n-fatness
(Sugawa (n = 2) 2003, Korte–Shanmugalingam, 2009; see also
Järvi–Vuorinen 1996 for related results).

Now, by the previous theorem we also have the equivalence:
Ω admits the pointwise n-Hardy
⇔ Ωc is uniformly perfect and unbounded
(⇔ Ω admits n-Hardy)
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A boundary Poincaré inequality

In the proof of [ unif. p-fat ⇒ pointwise p-Hardy ], the following
Sobolev-type estimate due to Maz’ja plays a key role: for u ∈ C∞(Rn)

1

|B|

∫
B
|u|p dx ≤ C

capp(1
2B ∩ {u = 0},B)

∫
B
|∇u|p dx . (4)

Now, if Ωc is unif. p-fat and u ∈ C∞
0 (Ω), it follows from (4) that∫

B
|u|p dx ≤ Crp

∫
B
|∇u|p dx . (5)

(a “boundary Poincaré inequality”)
This, combined with standard estimates (or a chaining argument), yields
the pointwise p-Hardy inequality.
Remark: Once we obtain [ pointwise p-Hardy ⇔ unif. p-fat ], we may
conclude that the validity of the p-Poincaré inequality (5) for all
u ∈ C∞

0 (Ω) is equivalent with the two other “p”-properties
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This, combined with standard estimates (or a chaining argument), yields
the pointwise p-Hardy inequality.

Remark: Once we obtain [ pointwise p-Hardy ⇔ unif. p-fat ], we may
conclude that the validity of the p-Poincaré inequality (5) for all
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u ∈ C∞

0 (Ω) is equivalent with the two other “p”-properties
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From pointwise Hardy to fatness, pt. 2

How to prove [ pointwise p-Hardy ⇒ unif. p-fatness of Ωc ] ??
Main ideas:

Fix w ∈ ∂Ω, R > 0, let B = B(w ,R), and v ∈ C∞
0 (2B) s.t.

0 ≤ v ≤ 1 and v ≥ 1 in B ∩ E .

If
∫
Bv ≥ C , we are done by Poincaré:

1 ≤ C

∫
B
v ≤ CR

(∫
2B
|∇v |p

)1/p
⇒

∫
2B
|∇v |p ≥ CRn−p

Otherwise u = 1− v must have values ≥ C1 in a large set E ⊂ 1
4B;

|E | ≥ C2|B|. Moreover, u = 0 on Ωc ∩ B.

⇒ we may use the pw p-Hardy on points x ∈ E ; let rx be the
corresponding “almost” best radii (0 < rx < 2dΩ(x) < R/2).

“5r”-covering thm. ⇒ we find xi ∈ E s.t. Bi = B(xi , ri ) are pairwise
disjoint but E ⊂

⋃
5Bi .

Juha Lehrbäck (University of Jyväskylä) Pointwise Hardy and fatness ROMFIN 2009 21 / 24



From pointwise Hardy to fatness, pt. 2

How to prove [ pointwise p-Hardy ⇒ unif. p-fatness of Ωc ] ??
Main ideas:

Fix w ∈ ∂Ω, R > 0, let B = B(w ,R), and v ∈ C∞
0 (2B) s.t.

0 ≤ v ≤ 1 and v ≥ 1 in B ∩ E .

If
∫
Bv ≥ C , we are done by Poincaré:
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From pointwise Hardy to fatness, pt. 2...cont’d

Thus Rn ≤ C |E | ≤ C
∑

ri
n

On the other hand

Cp
1 ≤ |u(xi )|p ≤ CdΩ(xi )

pM2dΩ(x)|∇u|p(x) ≤ CRpri
−n

∫
Bi

|∇u|p

⇒ ri
n ≤ CRp

∫
Bi

|∇u|p

Combining the above inequalities with the facts that |∇u| = |∇v | in
B and Bi ’s are pairwise disjoint, we get

Rn ≤ CRp
∞∑
i=1

∫
Bi

|∇u|p ≤ CRp

∫
2B
|∇v |p

Hence capp(Ωc ∩ B, 2B) ≥ CRn−p, and so Ωc is unif. p-fat.

Juha Lehrbäck (University of Jyväskylä) Pointwise Hardy and fatness ROMFIN 2009 22 / 24



From pointwise Hardy to fatness, pt. 2...cont’d

Thus Rn ≤ C |E | ≤ C
∑

ri
n

On the other hand

Cp
1 ≤ |u(xi )|p ≤ CdΩ(xi )

pM2dΩ(x)|∇u|p(x) ≤ CRpri
−n

∫
Bi

|∇u|p

⇒ ri
n ≤ CRp

∫
Bi

|∇u|p

Combining the above inequalities with the facts that |∇u| = |∇v | in
B and Bi ’s are pairwise disjoint, we get

Rn ≤ CRp
∞∑
i=1

∫
Bi

|∇u|p ≤ CRp

∫
2B
|∇v |p

Hence capp(Ωc ∩ B, 2B) ≥ CRn−p, and so Ωc is unif. p-fat.
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Juha Lehrbäck (University of Jyväskylä) Pointwise Hardy and fatness ROMFIN 2009 23 / 24



The End

Thank you for your attention
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