Dimensions, Whitney covers, and tubular neighborhoods

Juha Lehrbäck

joint work with Antti Käenmäki and Matti Vuorinen

Jyväskylän yliopisto

Analysis seminar, 01.10.2012, Helsinki

1. Introduction

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A question

For $E \subset \mathbb{R}^d$, the open *r*-neighborhood of *E* is

$$E_r = \{x \in \mathbb{R}^d : \operatorname{dist}(x, E) < r\}.$$

(aka tubular neighborhood or parallel set).

Q: How is the 'size' (and 'geometry') of E related to the 'size' of

$$\partial E_r = \{x \in \mathbb{R}^d : \operatorname{dist}(x, E) = r\}$$
?

(In particular, what are the right ways to measure these 'sizes'?)

It appears that ∂E_r is always(?) (d-1)-dimensional, so one should find estimates for $\mathcal{H}^{d-1}(\partial E_r)$ in terms of E.

Bit of history

If $d \in \{2,3\}$ and $E \subset \mathbb{R}^d$ is compact, then ∂E_r is a (d-1)-Lipschitz manifold for \mathcal{H}^1 -a.e. $r \in (0,\infty)$ [Brown 1972, d = 2; Ferry 1975, d = 3].

For $d \ge 4$ the above fails: there exists a compact set $E \subset \mathbb{R}^d$ such that ∂E_r , for 0 < r < 1, is never a (d-1)-manifold. [Ferry 1975]

Oleksiv and Pesin gave in 1985 a general estimate for $\mathcal{H}^{d-1}(\partial E_r)$, when $E \subset \mathbb{R}^d$ is bounded:

$$\mathcal{H}^{d-1}(\partial E_r) \leq egin{cases} C_1 r^{d-1}, & ext{for } r > d(E), \ C_2 r^{-1}, & ext{for } 0 < r \leq d(E). \end{cases}$$

Here $C_1 = C_1(d) \ge 1$ and $C_2 = C_2(d, d(E)) \ge 1$, and the growth orders are sharp. In particular $\mathcal{H}^{d-1}(\partial E_r) < \infty$ for all r > 0.

Reliable sources rumour that related considerations have also taken place at HUMD during the 80's.

Juha Lehrbäck (Jyväskylän yliopisto)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Bit of history: The main idea

How to prove the estimate of Oleksiv and Pesin:

$$\mathcal{H}^{d-1}(\partial E_r) \leq egin{cases} C_1 r^{d-1}, & ext{for } r > d(E), \ C_2 r^{-1}, & ext{for } 0 < r \leq d(E). \end{cases}$$

• If r > 2d(E), take a ball $B \supset E$ of radius d(E) and project ∂E_r to ∂B . This projection is C(r/d(E))-bi-Lipschitz, and thus

$$\mathcal{H}^{d-1}(\partial E_r) \lesssim (r/d(E))^{d-1}\mathcal{H}^{d-1}(\partial B) \approx r^{d-1}$$

• For $r \leq 2d(E)$ cover *B* using balls B_i with $d(B_i) \approx r/2$, and apply the previous case for $E_i = E \cap B_i$. As $\partial E_r \subset \bigcup_i \partial (E_i)_r$ and $\#B_i \leq (d(E)/r)^d$, we have

$$\mathcal{H}^{d-1}(\partial E_r) \lesssim \sum_i \mathcal{H}^{d-1}(\partial (E_i)_r) \lesssim (d(E)/r)^d r^{d-1} = C(d(E))r^{-1}$$

• Such ideas appear (at least) in [Brown 1972], [Oleksiv–Pesin 1985], and [Luukkainen 1998 (with a credit to Väisälä)]

A refinement of the above idea

Count only those balls B_i which really intersect E(\rightarrow Minkowski content/dimension)! Or better yet, look how much of ∂E_r there is at most/at least in *Whitney-type balls (or cubes)* B of $\mathbb{R}^d \setminus E$, with radii comparable to r, and then count the total number of such balls.

Before going to the details, we recall and introduce some preliminaries. At the end, we take a look at an example, which illustrates the sharpness of our results.

So here is the plan:

- Section 1: The Introduction
- Section 2: Preliminaries (on metric spaces and dimensions)
- Section 3: Whitney ball count and dimension
- Section 4: Tubular boundaries (and spherical dimension)
- Section 5: An example

Some more recent results

For more on the 'manifold problem', see e.g. [Gariepy and Pepe 1972, Fu 1985, Rataj and Zajíček 2012]

It is also true that for all but countably many r > 0

$$\frac{d}{dr}\mathcal{H}^d(E_r)=C\mathcal{H}^{d-1}(\partial E_r);$$

[Rataj and Winter 2010] based on [Stachó 1976], and that ∂E_r is (d-1)-rectifiable for all r > 0 [RW 2010].

These observations lead to a close connection between the asymptotics of

$$\frac{\mathcal{H}^{d-1}(\partial E_r)}{r^{d-1-\lambda}} \quad \text{and} \quad \frac{\mathcal{H}^d(E_r)}{r^{d-\lambda}} \quad [\mathsf{RW} \ 2010].$$

Related results will be considered in Section 4, but from a purely 'geometrical' point of view.

イロト 不得 トイヨト イヨト 二日

2. Preliminaries

- 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A metric space (X, d) is *doubling* if there is $N = N(X) \in \mathbb{N}$ so that any closed ball B(x, r) of center x and radius r > 0 can be covered by at most N balls of radius r/2.

Iteration of this condition gives $C \ge 1$ and s > 0 such that each ball B(x, R) can be covered by at most $C(r/R)^{-s}$ balls of radius r for all $0 < r < R < \operatorname{diam}(X)$.

The infimum of such exponents s is the (upper) Assouad dimension $\overline{\dim}_A(X)$; we have the upper bound $\overline{\dim}_A(X) \le \log_2 N$. In particular:

Lemma

A metric space X is doubling if and only if $\overline{\dim}_A(X) < \infty$.

the lower Assouad dimension

Conversely to the definition of the upper Assouad dimension, we may also consider all t > 0 for which there is a constant c > 0 so that if $0 < r < R < \operatorname{diam}(X)$, then for every $x \in X$ at least $c(r/R)^{-t}$ balls of radius r are needed to cover B(x, R). We call the supremum of all such t the *lower Assouad dimension* of X.

The restriction metric is used to define the upper and lower Assouad dimensions of a subset $E \subset X$.

Recall that a metric space X is *uniformly perfect* if there exists a constant $C \ge 1$ so that for every $x \in X$ and r > 0 we have $B(x, r) \setminus B(x, r/C) \neq \emptyset$ whenever $X \setminus B(x, r) \neq \emptyset$.

Lemma

A metric space X is uniformly perfect if and only if $\underline{\dim}_A(X) > 0$.

Juha Lehrbäck (Jyväskylän yliopisto)

General idea: Assouad dimensions reflect the 'extreme' behaviour of sets and take into account all scales 0 < r < d(E).

• If $E = \{0\} \cup [1,2] \subset \mathbb{R}$, then $\underline{\dim}_A(E) = 0$ and $\overline{\dim}_A(E) = 1$.

•
$$\underline{\dim}_{\mathsf{A}}(\mathbb{Z}) = 0$$
 and $\overline{\dim}_{\mathsf{A}}(\mathbb{Z}) = 1$.

- If $S \subset \mathbb{R}^2$ is an infinite, locally rectifiable von Koch snowflake -type curve consisting of unit intervals, then $\underline{\dim}_A(S) = 1$ and $\overline{\dim}_A(E) = \log 4/\log 3$ (flat on small scales, fractal on large scales)
- If $S \subset \mathbb{R}^2$ consists of infinitely many copies of the usual (fractal) von Koch snowflake curve, laid side by side, then $\underline{\dim}_A(S) = 1$ and $\overline{\dim}_A(E) = \log 4/\log 3$ (fractal on small scales, flat on large scales).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Metric spaces: doubling measures I

A measure μ on X is *doubling* if there is $C \ge 1$ so that $0 < \mu(2B) \le C\mu(B)$ for all closed balls $B \subset X$.

Iterating, we find c > 0 and $s \ge 0$ such that

$$\frac{\mu(B(y,r))}{\mu(B(x,R))} \ge c \left(\frac{r}{R}\right)^s \tag{1}$$

for all $y \in B(x, R)$ and 0 < r < R < d(X). The infimum of s satisfying (1) is called the *upper regularity dimension* of μ , $\overline{\dim}_{reg}(\mu)$.

It is easy to see that $\overline{\dim}_A(X) \leq \overline{\dim}_{reg}(\mu)$ whenever μ is doubling on X. In particular, if X has a doubling measure, then X is doubling.

Conversely, if X is doubling and complete, then there is a doubling measure μ on X [Luukkainen and Saksman 1998; Vol'berg and Konyagin 1987 (for compact sets)].

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Metric spaces: doubling measures II

If X is uniformly perfect and μ is doubling then there is a converse to (1): there are t > 0 and $C \ge 1$ such that

$$\frac{\mu(B(y,r))}{\mu(B(x,R))} \le C\left(\frac{r}{R}\right)^t \tag{2}$$

whenever 0 < r < R < d(X) and $y \in B(x, R)$. The supremum of all t satisfying (2) is called the *lower regularity dimension* of μ , $\underline{\dim}_{reg}(\mu)$.

Thus $\underline{\dim}_{reg}(\mu) > 0$ if μ is doubling and X is uniformly perfect, and in fact $\underline{\dim}_{reg}(\mu) \leq \underline{\dim}_{A}(X)$. If X is not uniformly perfect, then it is natural to define $\underline{\dim}_{reg}(\mu) = 0$.

Measure μ (or the space X) is called (Ahlfors) s-regular, if there is C > 0 such that

$$\frac{1}{C}r^{s} \leq \mu(B(x,r)) \leq Cr^{s}$$

for every $x \in X$ and all 0 < r < d(X). Then $\underline{\dim}_{reg}(\mu) = \overline{\dim}_{reg}(\mu) = s$.

Hausdorff and Minkowski contents

The Hausdorff (r-)content of dimension λ is

$$\mathcal{H}_r^{\lambda}(E) = \inf \bigg\{ \sum_k r_k^{\lambda} : E \subset \bigcup_k B(x_k, r_k), \ x_k \in E, \ 0 < r_k \leq r \bigg\},\$$

and the *Minkowski* (*r*-)content of dimension λ is

$$\mathcal{M}_r^{\lambda}(E) = \inf \left\{ Nr^{\lambda} : E \subset \bigcup_{k=1}^N B(x_k, r), \ x_k \in E \right\}.$$

It is immediate that $\mathcal{H}_r^{\lambda}(E) \leq \mathcal{M}_r^{\lambda}(E)$ for each compact $E \subset X$.

The λ -Hausdorff measure of E is $\mathcal{H}^{\lambda}(E) = \lim_{r \to 0} \mathcal{H}^{\lambda}_{r}(E)$.

Hausdorff and Minkowski dimensions

The Hausdorff dimension of $E \subset X$ is

$$\dim_{\mathsf{H}}(A) = \inf\{\lambda > 0 : \mathcal{H}^{\lambda}(A) = 0\}.$$

The *lower Minkowski dimension* of $E \subset X$ is

$$\underline{\dim}_{\mathsf{M}}(E) = \inf \left\{ \lambda > 0 : \liminf_{r \to 0} \mathcal{M}_{r}^{\lambda}(E) = 0 \right\}$$

and the upper Minkowski dimension of $E \subset X$ is

$$\overline{\dim}_{\mathsf{M}}(E) = \inf \Big\{ \lambda > 0 : \limsup_{r \to 0} \mathcal{M}_{r}^{\lambda}(E) = 0 \Big\}.$$

Notice that for each compact set $E \subset X$ we have

$$\dim_{\mathsf{H}}(E) \leq \underline{\dim}_{\mathsf{M}}(E) \leq \overline{\dim}_{\mathsf{M}}(E),$$

where all inequalities can be strict.

Juha Lehrbäck (Jyväskylän yliopisto)

Lower Assouad and Hausdorff

Lemma

If X is complete and $E \subset X$ is closed, then $\underline{\dim}_A(E) \leq \underline{\dim}_H(E \cap B)$ for all balls B centered at E.

Proof. If $0 < t_0 < \underline{\dim}_A(E)$, then

 $\mathcal{M}_r^{t_0}(E \cap B(R)) \ge c_0 R^{t_0}$ for all $0 < r < R < \operatorname{diam}(E)$.

By iteration, we find for each $0 < t < t_0$ a Cantor-type set $C \subset E \cap B$, for which the above estimate holds with the exponent *t*, and thus also

$$\mathcal{H}_{R}^{t}(E \cap B(R)) \geq cR^{t} \text{ for all } 0 < r < R < \operatorname{diam}(E)$$
(3)

(see [L. 2009] for details). Therefore $\dim_{H}(E \cap B) \ge \dim_{H}(C) \ge t$ and the claim follows.

In fact, for compact $E \subset X$ we have $\underline{\dim}_A(E) = \inf\{t > 0 : (3) \text{ holds}\}$.

(Note however that e.g. $\underline{\dim}_A(\mathbb{Q}) = 1$ but $\dim_H(\mathbb{Q}) = 0$).

Geometric conditions

A metric space X is *q*-quasiconvex if there exists a constant $q \ge 1$ such that for every $x, y \in X$ there is a curve $\gamma : [0, 1] \to X$ so that $x = \gamma(0)$, $y = \gamma(1)$, and length $(\gamma) \le qd(x, y)$.

We say that a set $E \subset X$ is *(uniformly)* ϱ -porous (for $0 \le \varrho \le 1$), if for every $x \in E$ and all 0 < r < d(E) there exists a point $y \in X$ such that $B(y, \varrho r) \subset B(x, r) \setminus E$.

If X is s-regular and complete, then $E \subset X$ is porous if and only if there are 0 < t < s and a t-regular set $F \subset X$ so that $E \subset F$ [JJKRRS]. In addition,

Proposition (KLV)

If X is s-regular, then there is a constant c > 0 such that $\overline{\dim}_A(E) \le s - c\varrho^s$ for all ϱ -porous sets $E \subset X$.

イロト 不得 とうせい かほとう ほ

Assouad dimensions and geometric conditions

- A set $E \subset X$ is doubling if and only if $\overline{\dim}_A(E) < \infty$.
- A set $E \subset X$ is uniformly perfect if and only if $\underline{\dim}_A(E) > 0$.
- Assume that X is s-regular. A set $E \subset X$ is porous if and only if $\overline{\dim}_A(E) < s$.
- If μ is a doubling measure on X, then

$$\underline{\dim}_{\mathrm{reg}}(\mu) \leq \underline{\dim}_{\mathsf{A}}(X) \leq \overline{\dim}_{\mathsf{A}}(X) \leq \overline{\dim}_{\mathrm{reg}}(\mu).$$

• If $E \subset X$ is compact, then

 $\underline{\dim}_{\mathsf{A}}(E) \leq \dim_{\mathsf{H}}(E) \leq \underline{\dim}_{\mathsf{M}}(E) \leq \overline{\dim}_{\mathsf{M}}(E) \leq \overline{\dim}_{\mathsf{A}}(E).$

Whitney cover

If $\Omega \subset X$ is open, we can cover Ω with a countable collection $\mathcal{W}(\Omega)$ of closed balls $B_i = B(x_i, \frac{1}{8} \operatorname{dist}(x_i, X \setminus \Omega))$, $x_i \in \Omega$, such that the overlap of these balls is uniformly bounded.

For instance, we can use the 5r-covering lemma for the sets

$$\{x \in \Omega : 2^{-k-1} \leq \operatorname{dist}(x, X \setminus \Omega) < 2^{-k}\}, \quad k \in \mathbb{Z}.$$

One can use any $0 < \delta \leq \frac{1}{2}$ instead of $\frac{1}{8}$ above, but for large δ some modifications in some of our results are necessary.

For $k \in \mathbb{Z}$ and $A \subset X$ we set $\mathcal{W}_k(\Omega; A) = \{B(x_i, r_i) \in \mathcal{W}(\Omega) : 2^{-k-1} < r_i \le 2^{-k} \text{ and } A \cap B(x_i, r_i) \neq \emptyset\}$ and $\mathcal{W}_k(\Omega) = \mathcal{W}_k(\Omega; X).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

3. Whitney ball count and dimension

- 4 E

< □ > < 同 > < 回 >

э

Background and motivating questions

In [Martio–Vuorinen 1987], the relation between upper Minkowski dimension and upper bounds for Whitney *cube* count was considered for compact $E \subset \mathbb{R}^d$. In particular, it was shown that if $\mathcal{H}^d(E) = 0$, then

$$\overline{\dim}_{\mathsf{M}}(E) = \inf\{\lambda \ge 0: \#\mathcal{W}_k^{\mathsf{C}}(\mathbb{R}^d \setminus E) \le C2^{\lambda k} \text{ for all } k \ge k_0\},$$

or, equivalently, $\overline{\dim}_{\mathsf{M}}(E) = \limsup_{k \to \infty} \frac{1}{k} \log_2 \# \mathcal{W}_k^{\mathsf{C}}(\mathbb{R}^d \setminus E).$

The following questions are now relevant:

- Does this hold in metric spaces for Whitney balls?
- Does something similar hold for lower Minkowski dimension?
- Does something similar hold for Assouad dimensions? Local Whitney ball count?

From now on, X is a doubling metric space.

Juha Lehrbäck (Jyväskylän yliopisto)

Upper bound for Whitney ball count..

Lemma

Let $E \subset X$ be closed set and fix $0 < \delta < 1$. If $B_0 = B(w, R)$ with $w \in E$, 0 < r < R, and $\{B(w_j, r)\}_{j=1}^N$, $w_j \in E$, is a cover of $E \cap 2B_0$, then $\#\mathcal{W}_k(X \setminus E; B_0) \leq CN$ for all $\delta r \leq 2^{-k} \leq r$. (Here $C = C(X, \delta)$.)

Idea: If $B(x, r') \in W_k(X \setminus E; B_0)$ then $B(x, r') \subset B(w_j, 10r)$ for some j. It follows (with a rather simple argument using doubling and the bounded overlap of W-balls) that $\#W_k(X \setminus E; B_0 \cap B(w_j, 10r)) \leq C\delta^{-s}$, where $s > \overline{\dim}_A(X)$.

Since each ball in $\mathcal{W}_k(X \setminus E; B_0)$ is in some $B(w_j, 10r)$, we conclude

$$\#\mathcal{W}_k(X\setminus E; B_0) \leq \sum_{j=1}^N \#\mathcal{W}_k(X\setminus E; B_0 \cap B(w_j, 10r)) \leq CN\delta^{-s}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

..and consequences of $\#\mathcal{W}_k(X \setminus E; B_0) \leq CN$

• If $E \subset X$ is closed and $\overline{\dim}_A(E) < \lambda$, then

 $\#\mathcal{W}_k(X\setminus E; B_0) \leq C2^{\lambda k}R^{\lambda}$

for all $B_0 = B(w, R)$, with 0 < R < d(E) and $w \in E$, $k > -\log_2 R$.

- If $E \subset X$ is compact and $\overline{\dim}_{\mathsf{M}}(E) < \lambda$ (or $\limsup_{r \to 0} \mathcal{M}_r^{\lambda}(E) < \infty$) then $\# \mathcal{W}_k(X \setminus E) \le C2^{\lambda k}$ for all $k \ge k_0$.
- If $E \subset X$ is closed and for each $B_0 = B(w, R)$ with 0 < R < d(E)and $w \in E$

$$\#\mathcal{W}_k(X\setminus E; B_0) \ge c2^{\lambda k}R^{\lambda}$$

for all $k \ge -\log_2 R + \ell$, then $\underline{\dim}_A(E) \ge \lambda$.

• If $E \subset X$ is compact and $\# \mathcal{W}_k(X \setminus E) \ge c2^{\lambda k}$ for all $k \ge k_0$, then $\underline{\dim}_{\mathsf{M}}(E) \ge \lambda$ (in fact $\liminf_{r \to 0} \mathcal{M}_r^{\lambda}(E) > 0$)

イロト イポト イヨト イヨト 二日

Lower bound for ball count..

Lemma

Assume that X is q-quasiconvex and $E \subset X$ is closed and ϱ -porous. Then there is c > 0 such that if $B_0 = B(w, R)$ with $0 < R < \operatorname{diam}(E)$ and $w \in E, 0 < r < R/2q$, and $\{B(w_j, r/2)\}_{j=1}^N$, $w_j \in E$, is a maximal packing of $E \cap \frac{1}{2}B_0$, then $\#W_k(X \setminus E; B_0) \ge cN$, where $k \in \mathbb{Z}$ is such that $\varrho r/10 < 2^{-k} \le \varrho r/5$.

Idea: By porosity, there is $y_j \in B(w_j, r)$ satisfying dist $(y_j, E) \ge \varrho r$. By quasiconvexity, there is $\gamma_j : [0, 1] \rightarrow B(w_j, qr)$ connecting y_j and w_j . By continuity, find $x_j \in \gamma_j([0, 1])$ with dist $(x_j, E) = 5 \cdot 2^{-k} \le \varrho r$. Then $x_j \in B(z_j, r_j) \in \mathcal{W}_k(X \setminus E; B_0)$, where $2^{-k-1} < r_j \le 2^{-k}$. Since the balls $\{B(w_j, r/2)\}_{j=1}^N$ are pairwise disjoint, the overlap of the balls $\{B(w_j, qr + \varrho r)\}_{j=1}^N$ is uniformly bounded by M (by doubling). Since each ball $B(w_j, qr + \varrho r)$ contains a ball from $\mathcal{W}_k(X \setminus E; B_0)$, we conclude that $N \le M \# \mathcal{W}_k(X \setminus E; B_0)$.

..and consequences of $\#\mathcal{W}_k(X \setminus E; B_0) \ge cN$

• If $E \subset X$ (here X is q-convex) is closed, porous, and $\underline{\dim}_A(E) > \lambda$, then

$$\#\mathcal{W}_k(X\setminus E;B_0)\geq c2^{\lambda k}R^\lambda$$

for all $B_0 = B(w, R)$, with 0 < R < d(E) and $w \in E$, and all $k > -\log_2 R + \ell$.

- If $E \subset X$ is compact, porous, and $\underline{\dim}_{\mathsf{M}}(E) > \lambda$ ($\liminf_{r \to 0} \mathcal{M}_r^{\lambda}(E) > 0$) then $\# \mathcal{W}_k(X \setminus E) \ge c 2^{\lambda k}$ for all $k \ge k_0$.
- If $E \subset X$ is closed, porous, and for all $B_0 = B(w, R)$ with 0 < R < d(E) and $w \in E$

$$#\mathcal{W}_k(X \setminus E; B_0) \leq C2^{\lambda k} R^{\lambda},$$

and for all $k \geq -\log_2 R$, then $\overline{\dim}_A(E) \leq \lambda$.

• If $E \subset X$ is compact and $\# \mathcal{W}_k(X \setminus E) \leq C2^{\lambda k}$ for all $k \geq k_0$, then $\overline{\dim}_{\mathsf{M}}(E) \leq \lambda$ (in fact $\limsup_{r \to 0} \mathcal{M}_r^{\lambda}(E) < \infty$)

Characterization for Minkowski dimensions

If $E \subset X$ is compact (and X quasiconvex), then

•
$$\overline{\dim}_{\mathsf{M}}(E) < \lambda \implies \#\mathcal{W}_k(X \setminus E) \leq C 2^{\lambda k}$$
 for all $k \geq k_0$.

•
$$\#\mathcal{W}_k(X \setminus E) \ge c2^{\lambda k}$$
 for all $k \ge k_0 \implies \underline{\dim}_{\mathsf{M}}(E) \ge \lambda$.

- $\underline{\dim}_{\mathsf{M}}(E) > \lambda \implies \#\mathcal{W}_k(X \setminus E) \ge c2^{\lambda k}$ for all $k \ge k_0$ if E is porous.
- $\#\mathcal{W}_k(X \setminus E) \leq C2^{\lambda k}$ for all $k \geq k_0 \implies \overline{\dim}_{\mathsf{M}}(E) \leq \lambda$ if E is porous.

In particular, if X is quasiconvex and $E \subset X$ is compact and porous, then

$$\overline{\dim}_{\mathsf{M}}(E) = \limsup_{k \to \infty} \frac{1}{k} \log_2 \# \mathcal{W}_k(X \setminus E),$$

$$\underline{\dim}_{\mathsf{M}}(E) = \liminf_{k \to \infty} \frac{1}{k} \log_2 \# \mathcal{W}_k(X \setminus E).$$

The porosity assumption is more or less crucial here (cf. the example of Section 5). However, if X is *s*-regular, then the characterization of the upper Minkowski dimension holds under weaker assumptions (we will get back to this soon).

Juha Lehrbäck (Jyväskylän yliopisto)

Non-quasiconvex case and Euclidean Whitney balls

Quasiconvexity (as such) is not that essential in the previous results; in particular, the existence of rectifiable curves is not necessary. Even without any local connectivity properties, we have (for instance) the following:

If $E \subset X$ is compact and ρ -porous, there is $\ell \in \mathbb{N}$ (depending on ρ) such that if $\underline{\dim}_{\mathsf{M}}(E) > \lambda$, then

$$\sum_{j=k}^{k+\ell} \# \mathcal{W}_j(X\setminus E;B_0) \geq c 2^{\lambda k} ext{ for all } k\geq k_0.$$

Actually, a similar modification is needed for the Euclidean Whitney cube decomposition $\mathcal{W}^{\mathcal{C}}(\mathbb{R}^d \setminus E)$ (with $d(Q) \leq d(Q, \mathbb{R}^d \setminus E) \leq 4d(Q)$), where certain (but not two consecutive) generations of cubes may be 'missing'. For instance: if $E \subset \mathbb{R}^d$ is compact and porous, then

$$\underline{\dim}_{\mathsf{M}}(E) = \liminf_{k \to \infty} \frac{1}{k} \log_2 \# \Big(\mathcal{W}_k^{\mathsf{C}}(\mathbb{R}^d \setminus E) \cup \mathcal{W}_{k+1}^{\mathsf{C}}(\mathbb{R}^d \setminus E) \Big).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Upper dimensions in s-regular space

Under the existence of an *s*-regular measure μ on *X*, we can slightly improve the previous results:

- If $E \subset X$ is closed, $\mu(E) = 0$, and for all $B_0 = B(w, R)$ with 0 < R < d(E) and $w \in E$ we have $\#W_k(X \setminus E; B_0) \le C2^{\lambda k}R^{\lambda}$ for all $k \ge -\log_2 R$, then $\overline{\dim}_A(E) \le \lambda$.
- If $E \subset X$ is compact, $\mu(E) = 0$, and $\#W_k(X \setminus E) \le C2^{\lambda k}$ for all $k \ge k_0$, then $\overline{\dim}_{\mathsf{M}}(E) \le \lambda$.

The condition $\mu(E) = 0$ can not be omitted; consider $B(0,1) \subset \mathbb{R}^n$.

Since always $\overline{\dim}_{M}(E) \geq \limsup_{k\to\infty} \frac{1}{k} \log_2 \# \mathcal{W}_k(X \setminus E)$, we conclude that if $\mu(E) = 0$, then $\overline{\dim}_{M}(E) = \limsup_{k\to\infty} \frac{1}{k} \log_2 \# \mathcal{W}_k(X \setminus E)$. (In \mathbb{R}^d , this follows from [MV 1987].)

If μ is a non-regular (but doubling) measure on X, then we obtain a weaker result for Minkowski and Assouad *codimensions* A = A = A = A

Juha Lehrbäck (Jyväskylän yliopisto)

Whitney covers

Helsinki 01102012 28 / 48

Proof of the s-regular case

Fix a ball $B_0 = B(w, R)$ with 0 < R < d(E) and $w \in E$, and take $k_1 \in \mathbb{Z}$ such that $2^{-k_1} \le r < 2^{-k_1+1}$. Since $E_r \cap B_0 \subset E \cup \bigcup_{k=k_1}^{\infty} \mathcal{W}_k(X \setminus E; B_0)$ and $\mu(B) \approx 2^{-sk}$ for $B \in \mathcal{W}_k(X \setminus E; B_0)$, we obtain

$$\begin{split} \mu(E_r \cap B_0) &\leq \mu(E) + C \sum_{k=k_1}^{\infty} \# \mathcal{W}_k(X \setminus E; B_0) 2^{-sk} \\ &\leq C \sum_{k=k_1}^{\infty} 2^{(\lambda-s)k} R^{\lambda} \leq C 2^{-k_1(s-\lambda)} R^{\lambda} \approx r^{s-\lambda} R^{\lambda} \end{split}$$

(we may assume $\lambda < s$). Using the *s*-regularity and considering maximal packings, it follows that $E \cap B_0$ can be covered by $C(r/R)^{-\lambda}$ balls of radius *r*, and thus $\overline{\dim}_A(E) \leq \lambda$.

For the upper Minkowski dimension, the claim follows with a similar computation.

Juha Lehrbäck (Jyväskylän yliopisto)

4. Tubular boundaries and spherical dimension

- - E

э

< □ > < 同 > < 三</p>

In \mathbb{R}^d (or in fact in any *d*-regular space) the Minkowski dimensions of a compact $E \subset \mathbb{R}^d$ can be defined equivalently as

$$\underline{\dim}_{\mathsf{M}}(E) = \inf \left\{ \lambda \geq 0 : \liminf_{r \downarrow 0} \frac{\mathcal{H}^{d}(E_{r})}{r^{d-\lambda}} = 0 \right\}$$

and

$$\overline{\dim}_{\mathsf{M}}(E) = \inf \Big\{ \lambda \geq 0 : \limsup_{r \downarrow 0} rac{\mathcal{H}^d(E_r)}{r^{d-\lambda}} = 0 \Big\}.$$

If $\mathcal{H}^d(E) = 0$, then for $\overline{\dim}_M(E)$ we can replace E_r by $E_{2r} \setminus E_r$; for $\underline{\dim}_M(E)$ we need in addition that E is porous.

In \mathbb{R}^d (or in fact in any *d*-regular space) the Minkowski dimensions of a compact $E \subset \mathbb{R}^d$ can be defined equivalently as

$$\underline{\dim}_{\mathsf{M}}(E) = \inf \left\{ \lambda \geq 0 : \liminf_{r \downarrow 0} \frac{\mathcal{H}^{d}(E_{r})}{r^{d-\lambda}} = 0 \right\}$$

and

$$\overline{\dim}_{\mathsf{M}}(E) = \inf \Big\{ \lambda \geq 0 : \limsup_{r \downarrow 0} rac{\mathcal{H}^d(E_r)}{r^{d-\lambda}} = 0 \Big\}.$$

If $\mathcal{H}^d(E) = 0$, then for $\overline{\dim}_{\mathsf{M}}(E)$ we can replace E_r by $E_{2r} \setminus E_r$; for $\underline{\dim}_{\mathsf{M}}(E)$ we need in addition that E is porous.

But what happens if we replace $E_{2r} \setminus E_r$ by ∂E_r ?

Spherical dimension

Rataj and Winter defined the *lower spherical dimension* of a compact $E \subset \mathbb{R}^d$ as

$$\underline{\dim}_{\mathsf{S}}(E) = \inf\{\lambda \ge 0 : \liminf_{r \downarrow 0} \frac{\mathcal{H}^{d-1}(\partial E_r)}{r^{d-1-\lambda}} = 0\}$$

and the upper spherical dimension as

$$\overline{\dim}_{\mathsf{S}}(E) = \inf\{\lambda \ge 0 : \limsup_{r \downarrow 0} \frac{\mathcal{H}^{d-1}(\partial E_r)}{r^{d-1-\lambda}} = 0\}.$$

If $\mathcal{H}^{d}(E) = 0$, then actually $\overline{\dim}_{S}(E) = \overline{\dim}_{M}(E)$, but

$$\frac{d-1}{d}\underline{\dim}_{\mathsf{M}}(E) \leq \underline{\dim}_{\mathsf{S}}(E) \leq \underline{\dim}_{\mathsf{M}}(E), \tag{4}$$

where the bounds are sharp (Winter: '<' sharp in the lower bound; KLV: can have '=' in the lower bound)

Juha Lehrbäck (Jyväskylän yliopisto)

(日) (同) (三) (三)

Spherical dimension: our contribution

Theorem

If $E \subset \mathbb{R}^d$ is a compact set, then $\underline{\dim}_{\mathsf{S}}(E) = \liminf_{k \to \infty} \frac{1}{k} \log_2 \# \mathcal{W}_k(\mathbb{R}^d \setminus E)$ $\overline{\dim}_{\mathsf{S}}(E) = \limsup_{k \to \infty} \frac{1}{k} \log_2 \# \mathcal{W}_k(\mathbb{R}^d \setminus E).$

Corollary

If
$$E \subset \mathbb{R}^d$$
 is compact and porous, then $\underline{\dim}_{S}(E) = \underline{\dim}_{M}(E)$
(and if $\mathcal{H}^d(E) = 0$, then $\overline{\dim}_{S}(E) = \overline{\dim}_{M}(E)$ [RW]).

Proposition

For each $d \in \mathbb{N}$ there exists a compact set $E \subset \mathbb{R}^d$ with $\mathcal{H}^d(E) = 0$, $\underline{\dim}_{\mathsf{M}}(E) = d$, and $\underline{\dim}_{\mathsf{S}}(E) = d - 1$.

Juha Lehrbäck (Jyväskylän yliopisto)

Main geometric lemmas

Lemma (1)

If $E \subset \mathbb{R}^d$ is a closed set, $k \in \mathbb{Z}$, and $B \in \mathcal{W}_k(\mathbb{R}^d \setminus E)$, then

$$\mathcal{H}^{d-1}(\partial E_r \cap B) \leq C2^{-k(d-1)}$$

for all r > 0, where $C \ge 1$ depends only on d.

Lemma (2)

If $E \subset \mathbb{R}^d$ is a closed set, $k \in \mathbb{Z}$, and $B \in \mathcal{W}_k(\mathbb{R}^d \setminus E)$, then

$$\mathcal{H}^{d-1}(\partial E_r \cap 8B) \geq cr^{d-1}$$

for all $2^{-k-1} \leq r \leq 2^{-k}$, where c > 0 depends only on d.

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

Main estimates for $\mathcal{H}^{d-1}(\partial E_r)$

Let $E \subset \mathbb{R}^d$ be a closed set, and let B_0 be a closed ball centered at E. If $k \in \mathbb{Z}$, and $2^{-(k+1)} < r \le 2^{-k}$, then

$$\mathcal{H}^{d-1}(\partial E_r \cap B_0) \leq Cr^{d-1} \sum_{j=k+2}^{k+4} \# \mathcal{W}_j(\mathbb{R}^d \setminus E; B_0),$$

and

$$\mathcal{H}^{d-1}(\partial E_r \cap 3B_0) \geq cr^{d-1} \# \mathcal{W}_k(\mathbb{R}^d \setminus E; B_0),$$

where $C \ge 1$ and c > 0 depend only on d.

In particular, for each compact set $E \subset \mathbb{R}^d$

$$cr^{d-1} \# \mathcal{W}_k(\mathbb{R}^d \setminus E) \leq \mathcal{H}^{d-1}(\partial E_r) \leq Cr^{d-1} \sum_{j=k+2}^{k+4} \# \mathcal{W}_j(\mathbb{R}^d \setminus E),$$

where $2^{-(k+1)} < r \le 2^{-k}$, and the constants $c, C \ge 0$ depend only on the dimension d. The characterizations of spherical dimensions follow.

Juha Lehrbäck (Jyväskylän yliopisto)

Proofs of the main estimates

(1) Let $k \in \mathbb{Z}$ and $2^{-(k+1)} < r \le 2^{-k}$. If $B = B(x, r_0) \in \mathcal{W}_j(\mathbb{R}^d \setminus E; B_0)$ and $\partial E_r \cap B \neq \emptyset$, then $2^{-j-1} < r_0 \le r/7 < 2^{-k-2}$ and $2^{-k-5} < r/9 \le r_0 \le 2^{-j}$. Thus

$$\partial E_r \cap B_0 \subset \bigcup_{j=k+2}^{k+4} \mathcal{W}_j(\mathbb{R}^d \setminus E; B_0)$$

and, consequently, by Lemma (1),

$$\mathcal{H}^{d-1}(\partial E_r \cap B_0) \leq \sum_{j=k+2}^{k+4} \sum_{B \in \mathcal{W}_j(\mathbb{R}^d \setminus E; B_0)} \mathcal{H}^{d-1}(\partial E_r \cap B)$$

 $\leq C \sum_{j=k+2}^{k+4} \# \mathcal{W}_j(\mathbb{R}^d \setminus E; B_0) 2^{-j(d-1)}.$

Juha Lehrbäck (Jyväskylän yliopisto)

(2) Let $k \in \mathbb{N}$, and $2^{-k-1} < r \le 2^{-k}$. The overlap of the balls 8*B*, for $B \in \mathcal{W}_k(\mathbb{R}^d \setminus E; B_0)$, is uniformly bounded by a constant $C_1 \ge 1$. Moreover, we have for these balls that $8B \subset 3B_0$. Thus Lemma (2) yields that

$$\mathcal{H}^{d-1}(\partial E_r \cap 3B_0) \ge C \sum_{B \in \mathcal{W}_k(\mathbb{R}^d \setminus E; B_0)} \mathcal{H}^{d-1}(\partial E_r \cap 8B)$$

 $\ge Cr^{d-1} \# \mathcal{W}_k(\mathbb{R}^d \setminus E; B_0),$

as desired.

Conclusion for Minkowski contents

Proposition

(1) If $E \subset \mathbb{R}^d$ is compact and $\lambda \ge 0$, then for all r > 0

$$\mathcal{H}^{d-1}(\partial E_r) \leq Cr^{d-1-\lambda}\mathcal{M}_r^{\lambda}(E)$$

(2) If $E \subset \mathbb{R}^d$ is compact and ρ -porous, and $\lambda \ge 0$, then for all $0 < r < \rho \operatorname{diam}(E)/5$

$$\mathcal{H}^{d-1}(\partial E_r) \geq cr^{d-1-\lambda}\mathcal{M}^{\lambda}_{10r/\varrho}(E)$$

Corollary

If
$$E \subset \mathbb{R}^d$$
 is compact and s-regular for $0 < s < d$, then
 $cr^{d-1-s} \leq \mathcal{H}^{d-1}(\partial E_r) \leq Cr^{d-1-s}$ for all $0 < r < r_0$.

Juha Lehrbäck (Jyväskylän yliopisto)

イロト 不得 トイヨト イヨト 二日

Conclusion for Assouad dimensions

Here $E \subset \mathbb{R}^d$ is closed and $B_0 = B(w, R)$, with 0 < R < d(E) and $w \in E$.

Corollary

$$(1) \overline{\dim}_{A}(E) < \lambda \Longrightarrow \mathcal{H}^{d-1}(\partial E_{r} \cap B_{0}) \leq Cr^{d-1}(r/R)^{-\lambda} \text{ for all } B_{0}, 0 < r < R.$$

$$(2) \mathcal{H}^{d-1}(\partial E_{r} \cap B_{0}) \geq cr^{d-1}(r/R)^{-\lambda} \text{ for all } B_{0}, 0 < r < \delta R \Longrightarrow \underline{\dim}_{A}(E) \geq \lambda.$$

$$(3) \text{ If } \mathcal{H}^{d}(E) = 0, \text{ then} \mathcal{H}^{d-1}(\partial E_{r} \cap B_{0}) \leq Cr^{d-1}(r/R)^{-\lambda} \text{ for all } B_{0}, 0 < r < R \Longrightarrow \overline{\dim}_{A}(E) \leq \lambda.$$

$$(4) \text{ If } E \text{ is porous, then } \underline{\dim}_{A}(E) > \lambda \Longrightarrow \mathcal{H}^{d-1}(\partial E_{r} \cap B_{0}) \geq cr^{d-1}(r/R)^{-\lambda} \text{ for all } B_{0}, 0 < r < \delta R.$$

Juha Lehrbäck (Jyväskylän yliopisto)

5. An example

æ

<ロ> <同> <同> < 同> < 同>

The goal and the idea of the construction

We construct a set $E \subset \mathbb{R}^2$ with $\mathcal{H}^2(E) = 0$ and $\dim_H(E) = \underline{\dim}_M(E) = 2$, but $\underline{\dim}_S(E) = 1$. This example can be easily generalized to all \mathbb{R}^d , $d \ge 1$, with dimensions $\underline{\dim}_M(E) = d$ and $\underline{\dim}_S(E) = d - 1$.

(Such *E* is necessarily non-porous).

The idea is to use a typical 'alternating' Cantor-type construction, where we have

(a) 'thick' generations of squares which guarantee the loss of porosity and give Minkowski dimension 2 for the resulting set ${\it E}$

and

(b) 'thin' generations which make E to be of zero measure (but not too thin so that dim_H(E) = 2).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Details I

We use the following λ -operation:

(λ) If Q is a collection of rectangles, we replace each $Q \in Q$ by four rectangles of side-length $\lambda \ell(Q)$ placed in the corners of Q.

Let $\Lambda = (\lambda_j)_{j=1}^{\infty}$, with $\lambda_j = \frac{1}{2}$ for odd j and $\frac{1}{4} \leq \lambda_j = (\frac{1}{2})^{1+1/j} < \frac{1}{2}$ for even j. Let $(s_j)_{j=1}^{\infty}$ be such that $s_j > 1$ for all $j \in \mathbb{N}$ and $\lim_{j\to\infty} s_j = 1$. We choose $(n_j)_{j=1}^{\infty}$, $n_j \in \mathbb{N}$, to be such that n_{j+1} is much bigger than $\sum_{i=1}^{j} n_i$.

Set $Q_0 = \{[0,1]^2\}$ and for each $j \in \mathbb{N}$ construct Q_j recursively from Q_{j-1} by applying the λ_j -operation n_j times. Then $\bigcup_{Q \in Q_j} Q = \bigcup_{Q \in Q_{j-1}} Q$, but $\#Q_j = 4^{n_j} \#Q_{j-1}$ for all odd j. Define $E = \bigcap_{j=1}^{\infty} \bigcup_{Q \in Q_j} Q$.

For odd *j* the λ_j -construction would produce a 2-dimensional set and for even *j* a Cantor set of dimension $\nu_j \nearrow 2$. Thus, if n_j is chosen large enough (depending on Λ and n_1, \ldots, n_{j-1}), it should be clear that $\dim_{\mathrm{H}}(E) = \dim_{\mathrm{M}}(E) = 2$.

Details II

When *j* is even, then the distance between two cubes in Q_j is at least $D_j = \lambda_j^{-1} \ell_j - 2\ell_j = \ell_j (\lambda_j^{-1} - 2) > 0$. Choose $d_j = \min\{D_j/3, (\#Q_j\ell_j)^{-1/(s_j-1)}\} > 0$. If we take n_{j+1} (depending on Λ , (s_j) , and n_1, \ldots, n_j) to be large enough, the ratio ℓ_{j+1}/d_j is as small as we wish. Thus we have for all $d_j/2 < r < d_j$

$$rac{\mathcal{H}^1(\partial \mathcal{E}_r)}{r^{2-1-s_j}}pprox \#\mathcal{Q}_j\ell_j d_j^{s_j-1}\leq 1,$$

and so the desired estimate $\underline{\dim}_{\mathsf{S}}(E) \leq s_j \to 1$ follows.

Finally,
$$\mathcal{H}^2(E) = 0$$
, since for even j
 $\mathcal{H}^2(E) \leq \sum_{Q \in \mathcal{Q}_j} \ell(Q)^2 = \left(\prod_{i=1}^{j-1} (4\lambda_i^2)^{n_i}\right) (4\lambda_j^2)^{n_j} \leq (4\lambda_j^2)^{n_j}$, and here $4\lambda_j^2 < 1$ and n_j can be chosen as large as we want.

Juha Lehrbäck (Jyväskylän yliopisto)

イロト 不得 とうせい かほとう ほ

Some questions of Winter

In Remark 2.4 of [Winter 2011] the following questions were asked/indicated:,

- Is there $E \subset \mathbb{R}^d$ with $\mathcal{H}^d(E) = 0$ and $\underline{\dim}_{\mathsf{S}}(E) = \frac{d-1}{d} \underline{\dim}_{\mathsf{M}}(E)$?
- If $\underline{\dim}_{M}(E) = \overline{\dim}_{M}(E)$, is $\underline{\dim}_{S}(E) = \dim_{M}(E)$?

• If $\underline{\dim}_{M}(E) = \underline{\dim}_{S}(E)$, is $\underline{\dim}_{M}(E) = \overline{\dim}_{M}(E)$?

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

Some questions of Winter

In Remark 2.4 of [Winter 2011] the following questions were asked/indicated:,

- Is there $E \subset \mathbb{R}^d$ with $\mathcal{H}^d(E) = 0$ and $\underline{\dim}_{\mathsf{S}}(E) = \frac{d-1}{d} \underline{\dim}_{\mathsf{M}}(E)$? Yes! by our example; here $\underline{\dim}_{\mathsf{S}}(E) = d - 1$ and $\underline{\dim}_{\mathsf{M}}(E) = d$
- If $\underline{\dim}_{M}(E) = \overline{\dim}_{M}(E)$, is $\underline{\dim}_{S}(E) = \dim_{M}(E)$? No! by our example. Here $\dim_{M}(E) = d$. Are there examples with $\dim_{M}(E) < d$? In a recent preprint, Rataj and Winter show that if $0 < \liminf_{r \to 0} \mathcal{M}_{r}^{\lambda}(E) \leq \limsup_{r \to 0} \mathcal{M}_{r}^{\lambda}(E) < \infty$, then $\underline{\dim}_{S}(E) = \dim_{M}(E) (= \overline{\dim}_{S}(E)) = \lambda$.
- If <u>dim_M(E) = dim_S(E)</u>, is <u>dim_M(E) = dim_M(E)</u>?
 No! Construct a compact and porous set E with <u>dim_M(E) < dim_M(E)</u>. Then <u>dim_S(E) = dim_M(E) < dim_M(E) = dim_S(E)</u>.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

- In all the known examples of $E \subset \mathbb{R}^d$ with $\underline{\dim}_{S}(E) < \underline{\dim}_{M}(E)$, we have $\underline{\dim}_{S}(E) \ge d 1$.
- Is this essential? (I claim that it is.)
- But why? And what really happens below d 1?
- Please tell me, if you have an idea.

M. BROWN. Sets of constant distance from a planar set. *Michigan Math. J.*, 19:321–323, 1972.

S. FERRY. When ϵ -boundaries are manifolds. Fund. Math., 90(3):199–210, 1975/76.

A. KÄENMÄKI, J. LEHRBÄCK AND M. VUORINEN. Dimensions, Whitney covers, and tubular neighborhoods. Preprint (2012), arXiv:1209.0629

I. Y. OLEKSIV AND N. I. PESIN. Finiteness of the Hausdorff measure of level sets of bounded subsets of a Euclidean space. *Mat. Zametki*, 37(3):422-431, 462, 1985.

J. RATAJ AND S. WINTER. On volume and surface area of parallel sets. *Indiana Univ. Math. J.*, 59(5):1661–1685, 2010.

J. RATAJ AND S. WINTER. Characterization of Minkowski measurability in terms of surface area. Preprint (2011), arXiv:1111.1825v2.

L. L. STACHÓ. On the volume function of parallel sets. Acta Sci. Math. (Szeged), 38(3–4):365–374, 1976.

S. WINTER. Lower S-dimension of fractal sets. J. Math. Anal. Appl., 375(2):467–477, 2011.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

More on parallel sets

J. H. G. Fu. Tubular neighborhoods in Euclidean spaces. Duke Math. J., 52(4):1025-1046, 1985.

R. GARIEPY AND W. D. PEPE. On the level sets of a distance function in a Minkowski space. *Proc. Amer. Math. Soc.*, 31:255–259, 1972.

P. JÄRVI. On the behavior of meromorphic functions around some nonisolated singularities. Ann. Acad. Sci. Fenn. Ser. A I Math., 19(2):367–374, 1994.

J. RATAJ AND L. ZAJÍČEK. Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces. *Houston J. Math.*, 38(2):445–467, 2012.

On dimensions:

P. ASSOUAD. Plongements lipschitziens dans \mathbb{R}^n . Bull. Soc. Math. France, 111(4):429–448, 1983.

G. BOULIGAND. Ensembles impropres et nombre dimensionnel. *Bull. Sci. Math.*, 52:320–344 and 361–376, 1928.

J. LUUKKAINEN. Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. *J. Korean Math. Soc.*, 35(1):23–76, 1998.

Some references: Metric spaces and geometric structures

E. JÄRVENPÄÄ, M. JÄRVENPÄÄ, A. KÄENMÄKI, T. RAJALA, S. ROGOVIN, AND V. SUOMALA. Packing dimension and Ahlfors regularity of porous sets in metric spaces. *Math. Z.*, 266(1):83–105, 2010.

P. JÄRVI AND M. VUORINEN. Uniformly perfect sets and quasiregular mappings. *J. London Math. Soc. (2)*, 54(3):515–529, 1996.

A. KÄENMÄKI. Porosity and regularity in metric measure spaces. *Real Anal. Exchange*, (31st Summer Symposium Conference):245–250, 2007.

J. LEHRBÄCK. Necessary conditions for weighted pointwise Hardy inequalities. Ann. Acad. Sci. Fenn. Math., 34(2):437–446, 2009.

J. LEHRBÄCK. Neighbourhood capacities. Ann. Acad. Sci. Fenn. Math., 37:35–51, 2012.

J. LUUKKAINEN AND E. SAKSMAN. Every complete doubling metric space carries a doubling measure. *Proc. Amer. Math. Soc.*, 126(2):531–534, 1998.

O. MARTIO AND M. VUORINEN. Whitney cubes, *p*-capacity, and Minkowski content. *Exposition. Math.*, 5(1):17–40, 1987.

A. L. VOL'BERG AND S. V. KONYAGIN. On measures with the doubling condition. Izv. Akad. Nauk SSSR Ser. Mat., 51(3):666-675, 1987.