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1. Introduction
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A question

For E ⊂ Rd , the open r -neighborhood of E is

Er = {x ∈ Rd : dist(x ,E ) < r}.

(aka tubular neighborhood or parallel set).

Q: How is the ‘size’ (and ‘geometry’) of E related to the ‘size’ of

∂Er = {x ∈ Rd : dist(x ,E ) = r} ?

(In particular, what are the right ways to measure these ‘sizes’?)

It appears that ∂Er is always(?) (d−1)-dimensional, so one should find
estimates for Hd−1(∂Er ) in terms of E .
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Bit of history

If d ∈ {2, 3} and E ⊂ Rd is compact, then ∂Er is a (d−1)-Lipschitz
manifold for H1-a.e. r ∈ (0,∞) [Brown 1972, d = 2; Ferry 1975, d = 3].

For d ≥ 4 the above fails: there exists a compact set E ⊂ Rd such that
∂Er , for 0 < r < 1, is never a (d−1)-manifold. [Ferry 1975]

Oleksiv and Pesin gave in 1985 a general estimate for Hd−1(∂Er ), when
E ⊂ Rd is bounded:

Hd−1(∂Er ) ≤

{
C1rd−1, for r > d(E ),

C2r−1, for 0 < r ≤ d(E ).

Here C1 = C1(d) ≥ 1 and C2 = C2(d , d(E )) ≥ 1, and the growth orders
are sharp. In particular Hd−1(∂Er ) <∞ for all r > 0.

Reliable sources rumour that related considerations have also taken place at HUMD

during the 80’s.
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Bit of history: The main idea

How to prove the estimate of Oleksiv and Pesin:

Hd−1(∂Er ) ≤

{
C1rd−1, for r > d(E ),

C2r−1, for 0 < r ≤ d(E ).

If r > 2d(E ), take a ball B ⊃ E of radius d(E ) and project ∂Er to
∂B. This projection is C (r/d(E ))-bi-Lipschitz, and thus

Hd−1(∂Er ) . (r/d(E ))d−1Hd−1(∂B) ≈ rd−1

For r ≤ 2d(E ) cover B using balls Bi with d(Bi ) ≈ r/2, and apply
the previous case for Ei = E ∩ Bi . As ∂Er ⊂

⋃
i ∂(Ei )r and

#Bi . (d(E )/r)d , we have

Hd−1(∂Er ) .
∑

i

Hd−1(∂(Ei )r ) . (d(E )/r)d rd−1 = C (d(E ))r−1

Such ideas appear (at least) in [Brown 1972], [Oleksiv–Pesin 1985],
and [Luukkainen 1998 (with a credit to Väisälä)]
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A refinement of the above idea

Count only those balls Bi which really intersect E
(→ Minkowski content/dimension)!

Or better yet, look how much of ∂Er there is at most/at least in
Whitney-type balls (or cubes) B of Rd \ E , with radii comparable to r ,
and then count the total number of such balls.

Before going to the details, we recall and introduce some preliminaries. At
the end, we take a look at an example, which illustrates the sharpness of
our results.

So here is the plan:

Section 1: The Introduction

Section 2: Preliminaries (on metric spaces and dimensions)

Section 3: Whitney ball count and dimension

Section 4: Tubular boundaries (and spherical dimension)

Section 5: An example
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Some more recent results

For more on the ‘manifold problem’, see e.g. [Gariepy and Pepe 1972,
Fu 1985, Rataj and Zaj́ıček 2012]

It is also true that for all but countably many r > 0

d
drH

d(Er ) = CHd−1(∂Er );

[Rataj and Winter 2010] based on [Stachó 1976], and that ∂Er is
(d−1)-rectifiable for all r > 0 [RW 2010].

These observations lead to a close connection between the asymptotics of

Hd−1(∂Er )

rd−1−λ and
Hd(Er )

rd−λ [RW 2010].

Related results will be considered in Section 4, but from a purely
‘geometrical’ point of view.
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2. Preliminaries
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the (upper) Assouad dimension

A metric space (X , d) is doubling if there is N = N(X ) ∈ N so that any
closed ball B(x , r) of center x and radius r > 0 can be covered by at most
N balls of radius r/2.

Iteration of this condition gives C ≥ 1 and s > 0 such that each ball
B(x ,R) can be covered by at most C (r/R)−s balls of radius r for all
0 < r < R < diam(X ).

The infimum of such exponents s is the (upper) Assouad dimension
dimA(X ); we have the upper bound dimA(X ) ≤ log2 N. In particular:

Lemma

A metric space X is doubling if and only if dimA(X ) <∞.
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the lower Assouad dimension

Conversely to the definition of the upper Assouad dimension, we may also
consider all t > 0 for which there is a constant c > 0 so that if
0 < r < R < diam(X ), then for every x ∈ X at least c(r/R)−t balls of
radius r are needed to cover B(x ,R). We call the supremum of all such t
the lower Assouad dimension of X .

The restriction metric is used to define the upper and lower Assouad
dimensions of a subset E ⊂ X .

Recall that a metric space X is uniformly perfect if there exists a constant
C ≥ 1 so that for every x ∈ X and r > 0 we have B(x , r) \ B(x , r/C ) 6= ∅
whenever X \ B(x , r) 6= ∅.

Lemma

A metric space X is uniformly perfect if and only if dimA(X ) > 0.
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Some examples of Assouad dimensions

General idea: Assouad dimensions reflect the ‘extreme’ behaviour of sets
and take into account all scales 0 < r < d(E ).

If E = {0} ∪ [1, 2] ⊂ R, then dimA(E ) = 0 and dimA(E ) = 1.

dimA(Z) = 0 and dimA(Z) = 1.

If S ⊂ R2 is an infinite, locally rectifiable von Koch snowflake -type
curve consisting of unit intervals, then dimA(S) = 1 and
dimA(E ) = log 4/ log 3 (flat on small scales, fractal on large scales)

If S ⊂ R2 consists of infinitely many copies of the usual (fractal) von
Koch snowflake curve, laid side by side, then dimA(S) = 1 and
dimA(E ) = log 4/ log 3 (fractal on small scales, flat on large scales).
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Metric spaces: doubling measures I

A measure µ on X is doubling if there is C ≥ 1 so that
0 < µ(2B) ≤ Cµ(B) for all closed balls B ⊂ X .

Iterating, we find c > 0 and s ≥ 0 such that

µ(B(y , r))

µ(B(x ,R))
≥ c

( r

R

)s
(1)

for all y ∈ B(x ,R) and 0 < r < R < d(X ). The infimum of s satisfying
(1) is called the upper regularity dimension of µ, dimreg(µ).

It is easy to see that dimA(X ) ≤ dimreg(µ) whenever µ is doubling on X .
In particular, if X has a doubling measure, then X is doubling.

Conversely, if X is doubling and complete, then there is a doubling
measure µ on X [Luukkainen and Saksman 1998; Vol’berg and Konyagin
1987 (for compact sets)].
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Metric spaces: doubling measures II

If X is uniformly perfect and µ is doubling then there is a converse to (1):
there are t > 0 and C ≥ 1 such that

µ(B(y , r))

µ(B(x ,R))
≤ C

( r

R

)t
(2)

whenever 0 < r < R < d(X ) and y ∈ B(x ,R). The supremum of all t
satisfying (2) is called the lower regularity dimension of µ, dimreg(µ).

Thus dimreg(µ) > 0 if µ is doubling and X is uniformly perfect, and in fact
dimreg(µ) ≤ dimA(X ). If X is not uniformly perfect, then it is natural to
define dimreg(µ) = 0.

Measure µ (or the space X ) is called (Ahlfors) s-regular, if there is C > 0
such that

1
C r s ≤ µ(B(x , r)) ≤ Cr s

for every x ∈ X and all 0 < r < d(X ). Then dimreg(µ) = dimreg(µ) = s.
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Hausdorff and Minkowski contents

The Hausdorff (r-)content of dimension λ is

Hλr (E ) = inf

{∑
k

rλk : E ⊂
⋃
k

B(xk , rk), xk ∈ E , 0 < rk ≤ r

}
,

and the Minkowski (r -)content of dimension λ is

Mλ
r (E ) = inf

{
Nrλ : E ⊂

N⋃
k=1

B(xk , r), xk ∈ E

}
.

It is immediate that Hλr (E ) ≤Mλ
r (E ) for each compact E ⊂ X .

The λ-Hausdorff measure of E is Hλ(E ) = limr→0Hλr (E ).
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Hausdorff and Minkowski dimensions

The Hausdorff dimension of E ⊂ X is

dimH(A) = inf{λ > 0 : Hλ(A) = 0}.

The lower Minkowski dimension of E ⊂ X is

dimM(E ) = inf
{
λ > 0 : lim inf

r→0
Mλ

r (E ) = 0
}

and the upper Minkowski dimension of E ⊂ X is

dimM(E ) = inf
{
λ > 0 : lim sup

r→0
Mλ

r (E ) = 0
}
.

Notice that for each compact set E ⊂ X we have

dimH(E ) ≤ dimM(E ) ≤ dimM(E ),

where all inequalities can be strict.
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Lower Assouad and Hausdorff

Lemma

If X is complete and E ⊂ X is closed, then dimA(E ) ≤ dimH(E ∩ B) for
all balls B centered at E .

Proof. If 0 < t0 < dimA(E ), then

Mt0
r (E ∩ B(R)) ≥ c0Rt0 for all 0 < r < R < diam(E ).

By iteration, we find for each 0 < t < t0 a Cantor-type set C ⊂ E ∩ B, for
which the above estimate holds with the exponent t, and thus also

Ht
R

(
E ∩ B(R)

)
≥ cRt for all 0 < r < R < diam(E ) (3)

(see [L. 2009] for details). Therefore dimH(E ∩B) ≥ dimH(C ) ≥ t and the
claim follows.

In fact, for compact E ⊂ X we have dimA(E ) = inf{t > 0 : (3) holds}.

(Note however that e.g. dimA(Q) = 1 but dimH(Q) = 0)
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Geometric conditions

A metric space X is q-quasiconvex if there exists a constant q ≥ 1 such
that for every x , y ∈ X there is a curve γ : [0, 1]→ X so that x = γ(0),
y = γ(1), and length(γ) ≤ qd(x , y).

We say that a set E ⊂ X is (uniformly) %-porous (for 0 ≤ % ≤ 1), if for
every x ∈ E and all 0 < r < d(E ) there exists a point y ∈ X such that
B(y , %r) ⊂ B(x , r) \ E .

If X is s-regular and complete, then E ⊂ X is porous if and only if there
are 0 < t < s and a t-regular set F ⊂ X so that E ⊂ F [JJKRRS]. In
addition,

Proposition (KLV)

If X is s-regular, then there is a constant c > 0 such that
dimA(E ) ≤ s − c%s for all %-porous sets E ⊂ X .
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Assouad dimensions and geometric conditions

A set E ⊂ X is doubling if and only if dimA(E ) <∞.

A set E ⊂ X is uniformly perfect if and only if dimA(E ) > 0.

Assume that X is s-regular.
A set E ⊂ X is porous if and only if dimA(E ) < s.

If µ is a doubling measure on X , then

dimreg(µ) ≤ dimA(X ) ≤ dimA(X ) ≤ dimreg(µ).

If E ⊂ X is compact, then

dimA(E ) ≤ dimH(E ) ≤ dimM(E ) ≤ dimM(E ) ≤ dimA(E ).
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Whitney cover

If Ω ⊂ X is open, we can cover Ω with a countable collection W(Ω) of
closed balls Bi = B(xi ,

1
8 dist(xi ,X \ Ω)), xi ∈ Ω, such that the overlap of

these balls is uniformly bounded.

For instance, we can use the 5r -covering lemma for the sets

{x ∈ Ω : 2−k−1 ≤ dist(x ,X \ Ω) < 2−k}, k ∈ Z.

One can use any 0 < δ ≤ 1
2 instead of 1

8 above, but for large δ some
modifications in some of our results are necessary.

For k ∈ Z and A ⊂ X we set

Wk(Ω; A) = {B(xi , ri ) ∈ W(Ω) : 2−k−1 < ri ≤ 2−k and A ∩ B(xi , ri ) 6= ∅}

and Wk(Ω) =Wk(Ω; X ).
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3. Whitney ball count and dimension

Juha Lehrbäck (Jyväskylän yliopisto) Whitney covers Helsinki 01102012 20 / 48



Background and motivating questions

In [Martio–Vuorinen 1987], the relation between upper Minkowski
dimension and upper bounds for Whitney cube count was considered for
compact E ⊂ Rd . In particular, it was shown that if Hd(E ) = 0, then

dimM(E ) = inf{λ ≥ 0 : #WC
k (Rd \ E ) ≤ C 2λk for all k ≥ k0},

or, equivalently, dimM(E ) = lim supk→∞
1
k log2 #WC

k (Rd \ E ).

The following questions are now relevant:

Does this hold in metric spaces for Whitney balls?

Does something similar hold for lower Minkowski dimension?

Does something similar hold for Assouad dimensions? Local Whitney
ball count?

From now on, X is a doubling metric space.
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Upper bound for Whitney ball count..

Lemma

Let E ⊂ X be closed set and fix 0 < δ < 1. If B0 = B(w ,R) with w ∈ E ,
0 < r < R, and {B(wj , r)}Nj=1, wj ∈ E , is a cover of E ∩ 2B0, then

#Wk(X \ E ; B0) ≤ CN for all δr ≤ 2−k ≤ r . (Here C = C (X , δ).)

Idea: If B(x , r ′) ∈ Wk(X \ E ; B0) then B(x , r ′) ⊂ B(wj , 10r) for some j .
It follows (with a rather simple argument using doubling and the bounded
overlap of W-balls) that #Wk

(
X \ E ; B0 ∩ B(wj , 10r)

)
≤ Cδ−s , where

s > dimA(X ).

Since each ball in Wk

(
X \ E ; B0

)
is in some B(wj , 10r), we conclude

#Wk(X \ E ; B0) ≤
N∑

j=1

#Wk

(
X \ E ; B0 ∩ B(wj , 10r)

)
≤ CNδ−s .
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..and consequences of #Wk(X \ E ; B0) ≤ CN

If E ⊂ X is closed and dimA(E ) < λ, then

#Wk(X \ E ; B0) ≤ C 2λkRλ

for all B0 = B(w ,R), with 0 < R < d(E ) and w ∈ E , k > − log2 R.

If E ⊂ X is compact and dimM(E ) < λ (or lim sup
r→0

Mλ
r (E ) <∞)

then #Wk(X \ E ) ≤ C 2λk for all k ≥ k0.

If E ⊂ X is closed and for each B0 = B(w ,R) with 0 < R < d(E )
and w ∈ E

#Wk(X \ E ; B0) ≥ c2λkRλ

for all k ≥ − log2 R + `, then dimA(E ) ≥ λ.

If E ⊂ X is compact and #Wk(X \ E ) ≥ c2λk for all k ≥ k0,
then dimM(E ) ≥ λ (in fact lim inf

r→0
Mλ

r (E ) > 0)
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Lower bound for ball count..

Lemma

Assume that X is q-quasiconvex and E ⊂ X is closed and %-porous. Then
there is c > 0 such that if B0 = B(w ,R) with 0 < R < diam(E ) and
w ∈ E , 0 < r < R/2q, and {B(wj , r/2)}Nj=1, wj ∈ E , is a maximal packing

of E ∩ 1
2B0, then #Wk(X \ E ; B0) ≥ cN, where k ∈ Z is such that

%r/10 < 2−k ≤ %r/5.

Idea: By porosity, there is yj ∈ B(wj , r) satisfying dist(yj ,E ) ≥ %r . By
quasiconvexity, there is γj : [0, 1]→ B(wj , qr) connecting yj and wj . By
continuity, find xj ∈ γj([0, 1]) with dist(xj ,E ) = 5 · 2−k ≤ %r . Then
xj ∈ B(zj , rj) ∈ Wk(X \ E ; B0), where 2−k−1 < rj ≤ 2−k . Since the balls
{B(wj , r/2)}Nj=1 are pairwise disjoint, the overlap of the balls

{B(wj , qr + %r)}Nj=1 is uniformly bounded by M (by doubling). Since each
ball B(wj , qr + %r) contains a ball from Wk(X \ E ; B0), we conclude that
N ≤ M#Wk(X \ E ; B0).
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..and consequences of #Wk(X \ E ; B0) ≥ cN

If E ⊂ X (here X is q-convex) is closed, porous, and dimA(E ) > λ,
then

#Wk(X \ E ; B0) ≥ c2λkRλ

for all B0 = B(w ,R), with 0 < R < d(E ) and w ∈ E , and all
k > − log2 R + `.

If E ⊂ X is compact, porous, and dimM(E ) > λ (lim inf
r→0

Mλ
r (E ) > 0)

then #Wk(X \ E ) ≥ c2λk for all k ≥ k0.

If E ⊂ X is closed, porous, and for all B0 = B(w ,R) with
0 < R < d(E ) and w ∈ E

#Wk(X \ E ; B0) ≤ C 2λkRλ,

and for all k ≥ − log2 R, then dimA(E ) ≤ λ.

If E ⊂ X is compact and #Wk(X \ E ) ≤ C 2λk for all k ≥ k0,
then dimM(E ) ≤ λ (in fact lim sup

r→0
Mλ

r (E ) <∞)
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Characterization for Minkowski dimensions

If E ⊂ X is compact (and X quasiconvex), then

dimM(E ) < λ =⇒ #Wk(X \ E ) ≤ C 2λk for all k ≥ k0.

#Wk(X \ E ) ≥ c2λk for all k ≥ k0 =⇒ dimM(E ) ≥ λ.

dimM(E ) > λ =⇒ #Wk(X \ E ) ≥ c2λk for all k ≥ k0 if E is porous.

#Wk(X \E ) ≤ C 2λk for all k ≥ k0 =⇒ dimM(E ) ≤ λ if E is porous.

In particular, if X is quasiconvex and E ⊂ X is compact and porous, then

dimM(E ) = lim sup
k→∞

1
k log2 #Wk(X \ E ),

dimM(E ) = lim inf
k→∞

1
k log2 #Wk(X \ E ).

The porosity assumption is more or less crucial here (cf. the example of
Section 5). However, if X is s-regular, then the characterization of the
upper Minkowski dimension holds under weaker assumptions (we will get
back to this soon).
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Non-quasiconvex case and Euclidean Whitney balls

Quasiconvexity (as such) is not that essential in the previous results; in
particular, the existence of rectifiable curves is not necessary. Even without
any local connectivity properties, we have (for instance) the following:

If E ⊂ X is compact and %-porous, there is ` ∈ N (depending on %) such
that if dimM(E ) > λ, then

k+∑̀
j=k

#Wj(X \ E ; B0) ≥ c2λk for all k ≥ k0.

Actually, a similar modification is needed for the Euclidean Whitney cube
decomposition WC (Rd \ E ) (with d(Q) ≤ d(Q,Rd \ E ) ≤ 4d(Q)), where
certain (but not two consecutive) generations of cubes may be ‘missing’.
For instance: if E ⊂ Rd is compact and porous, then

dimM(E ) = lim inf
k→∞

1
k log2 #

(
WC

k (Rd \ E ) ∪WC
k+1(Rd \ E )

)
.

Juha Lehrbäck (Jyväskylän yliopisto) Whitney covers Helsinki 01102012 27 / 48



Upper dimensions in s-regular space

Under the existence of an s-regular measure µ on X , we can slightly
improve the previous results:

If E ⊂ X is closed, µ(E ) = 0, and for all B0 = B(w ,R) with
0 < R < d(E ) and w ∈ E we have #Wk(X \ E ; B0) ≤ C 2λkRλ for
all k ≥ − log2 R, then dimA(E ) ≤ λ.

If E ⊂ X is compact, µ(E ) = 0, and #Wk(X \ E ) ≤ C 2λk for all
k ≥ k0, then dimM(E ) ≤ λ.

The condition µ(E ) = 0 can not be omitted; consider B(0, 1) ⊂ Rn.

Since always dimM(E ) ≥ lim supk→∞
1
k log2 #Wk(X \ E ), we conclude

that if µ(E ) = 0, then dimM(E ) = lim supk→∞
1
k log2 #Wk(X \ E ).

(In Rd , this follows from [MV 1987].)

If µ is a non-regular (but doubling) measure on X , then we obtain a
weaker result for Minkowski and Assouad codimensions.
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Proof of the s-regular case

Fix a ball B0 = B(w ,R) with 0 < R < d(E ) and w ∈ E , and take k1 ∈ Z
such that 2−k1 ≤ r < 2−k1+1. Since Er ∩ B0 ⊂ E ∪

⋃∞
k=k1
Wk(X \ E ; B0)

and µ(B) ≈ 2−sk for B ∈ Wk(X \ E ; B0), we obtain

µ(Er ∩ B0) ≤ µ(E ) + C
∞∑

k=k1

#Wk(X \ E ; B0)2−sk

≤ C
∞∑

k=k1

2(λ−s)kRλ ≤ C 2−k1(s−λ)Rλ ≈ r s−λRλ

(we may assume λ < s). Using the s-regularity and considering maximal
packings, it follows that E ∩ B0 can be covered by C (r/R)−λ balls of
radius r , and thus dimA(E ) ≤ λ.

For the upper Minkowski dimension, the claim follows with a similar
computation.
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4. Tubular boundaries and spherical dimension
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Minkowski dimension in Rd

In Rd (or in fact in any d-regular space) the Minkowski dimensions of a
compact E ⊂ Rd can be defined equivalently as

dimM(E ) = inf
{
λ ≥ 0 : lim inf

r↓0

Hd(Er )

rd−λ = 0
}

and

dimM(E ) = inf
{
λ ≥ 0 : lim sup

r↓0

Hd(Er )

rd−λ = 0
}
.

If Hd(E ) = 0, then for dimM(E ) we can replace Er by E2r \ Er ; for
dimM(E ) we need in addition that E is porous.

But what happens if we replace E2r \ Er by ∂Er ?
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Juha Lehrbäck (Jyväskylän yliopisto) Whitney covers Helsinki 01102012 31 / 48



Spherical dimension

Rataj and Winter defined the lower spherical dimension of a compact
E ⊂ Rd as

dimS(E ) = inf{λ ≥ 0 : lim inf
r↓0

Hd−1(∂Er )

rd−1−λ = 0}

and the upper spherical dimension as

dimS(E ) = inf{λ ≥ 0 : lim sup
r↓0

Hd−1(∂Er )

rd−1−λ = 0}.

If Hd(E ) = 0, then actually dimS(E ) = dimM(E ), but

d−1
d dimM(E ) ≤ dimS(E ) ≤ dimM(E ), (4)

where the bounds are sharp (Winter: ‘<’ sharp in the lower bound;
KLV: can have ‘=’ in the lower bound)
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Spherical dimension: our contribution

Theorem

If E ⊂ Rd is a compact set, then

dimS(E ) = lim inf
k→∞

1
k log2 #Wk(Rd \ E )

dimS(E ) = lim sup
k→∞

1
k log2 #Wk(Rd \ E ).

Corollary

If E ⊂ Rd is compact and porous, then dimS(E ) = dimM(E )
(and if Hd(E ) = 0, then dimS(E ) = dimM(E ) [RW]).

Proposition

For each d ∈ N there exists a compact set E ⊂ Rd with Hd(E ) = 0,
dimM(E ) = d, and dimS(E ) = d − 1.
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Main geometric lemmas

Lemma (1)

If E ⊂ Rd is a closed set, k ∈ Z, and B ∈ Wk(Rd \ E ), then

Hd−1(∂Er ∩ B) ≤ C 2−k(d−1)

for all r > 0, where C ≥ 1 depends only on d.

Lemma (2)

If E ⊂ Rd is a closed set, k ∈ Z, and B ∈ Wk(Rd \ E ), then

Hd−1(∂Er ∩ 8B) ≥ crd−1

for all 2−k−1 ≤ r ≤ 2−k , where c > 0 depends only on d.
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Main estimates for Hd−1(∂Er )

Let E ⊂ Rd be a closed set, and let B0 be a closed ball centered at E . If
k ∈ Z, and 2−(k+1) < r ≤ 2−k , then

Hd−1(∂Er ∩ B0) ≤ Crd−1
k+4∑

j=k+2

#Wj(Rd \ E ; B0),

and
Hd−1(∂Er ∩ 3B0) ≥ crd−1#Wk(Rd \ E ; B0),

where C ≥ 1 and c > 0 depend only on d .

In particular, for each compact set E ⊂ Rd

crd−1#Wk(Rd \ E ) ≤ Hd−1(∂Er ) ≤ Crd−1
k+4∑

j=k+2

#Wj(Rd \ E ),

where 2−(k+1) < r ≤ 2−k , and the constants c ,C ≥ 0 depend only on the
dimension d . The characterizations of spherical dimensions follow.
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Proofs of the main estimates

(1) Let k ∈ Z and 2−(k+1) < r ≤ 2−k . If B = B(x , r0) ∈ Wj(Rd \ E ; B0)
and ∂Er ∩ B 6= ∅, then 2−j−1 < r0 ≤ r/7 < 2−k−2 and
2−k−5 < r/9 ≤ r0 ≤ 2−j . Thus

∂Er ∩ B0 ⊂
k+4⋃

j=k+2

Wj(Rd \ E ; B0)

and, consequently, by Lemma (1),

Hd−1(∂Er ∩ B0) ≤
k+4∑

j=k+2

∑
B∈Wj (Rd\E ;B0)

Hd−1(∂Er ∩ B)

≤ C
k+4∑

j=k+2

#Wj(Rd \ E ; B0)2−j(d−1).
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Proofs of the main estimates

(2) Let k ∈ N, and 2−k−1 < r ≤ 2−k . The overlap of the balls 8B, for
B ∈ Wk(Rd \ E ; B0), is uniformly bounded by a constant C1 ≥ 1.
Moreover, we have for these balls that 8B ⊂ 3B0. Thus Lemma (2) yields
that

Hd−1(∂Er ∩ 3B0) ≥ C
∑

B∈Wk (Rd\E ;B0)

Hd−1(∂Er ∩ 8B)

≥ Crd−1#Wk(Rd \ E ; B0),

as desired.
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Conclusion for Minkowski contents

Proposition

(1) If E ⊂ Rd is compact and λ ≥ 0, then for all r > 0

Hd−1(∂Er ) ≤ Crd−1−λMλ
r (E )

(2) If E ⊂ Rd is compact and %-porous, and λ ≥ 0, then for all
0 < r < % diam(E )/5

Hd−1(∂Er ) ≥ crd−1−λMλ
10r/%(E )

Corollary

If E ⊂ Rd is compact and s-regular for 0 < s < d, then
crd−1−s ≤ Hd−1(∂Er ) ≤ Crd−1−s for all 0 < r < r0.
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Conclusion for Assouad dimensions

Here E ⊂ Rd is closed and B0 = B(w ,R), with 0 < R < d(E ) and w ∈ E .

Corollary

(1) dimA(E ) < λ
=⇒ Hd−1(∂Er ∩ B0) ≤ Crd−1(r/R)−λ for all B0, 0 < r < R.

(2) Hd−1(∂Er ∩ B0) ≥ crd−1(r/R)−λ for all B0, 0 < r < δR
=⇒ dimA(E ) ≥ λ.

(3) If Hd(E ) = 0, then
Hd−1(∂Er ∩ B0) ≤ Crd−1(r/R)−λ for all B0, 0 < r < R
=⇒ dimA(E ) ≤ λ.

(4) If E is porous, then dimA(E ) > λ
=⇒ Hd−1(∂Er ∩ B0) ≥ crd−1(r/R)−λ for all B0, 0 < r < δR.
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5. An example
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The goal and the idea of the construction

We construct a set E ⊂ R2 with H2(E ) = 0 and dimH(E ) = dimM(E ) = 2,
but dimS(E ) = 1. This example can be easily generalized to all Rd , d ≥ 1,
with dimensions dimM(E ) = d and dimS(E ) = d − 1.

(Such E is necessarily non-porous).

The idea is to use a typical ‘alternating’ Cantor-type construction, where
we have

(a) ‘thick’ generations of squares which guarantee the loss of porosity and
give Minkowski dimension 2 for the resulting set E

and

(b) ‘thin’ generations which make E to be of zero measure (but not too
thin so that dimH(E ) = 2).
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Details I

We use the following λ-operation:

(λ) If Q is a collection of rectangles, we replace each Q ∈ Q by four
rectangles of side-length λ`(Q) placed in the corners of Q.

Let Λ = (λj)
∞
j=1, with λj = 1

2 for odd j and 1
4 ≤ λj = (1

2)1+1/j < 1
2 for

even j . Let (sj)
∞
j=1 be such that sj > 1 for all j ∈ N and limj→∞ sj = 1. We

choose (nj)
∞
j=1, nj ∈ N, to be such that nj+1 is much bigger than

∑j
i=1 ni .

Set Q0 = {[0, 1]2} and for each j ∈ N construct Qj recursively from Qj−1

by applying the λj -operation nj times. Then
⋃

Q∈Qj
Q =

⋃
Q∈Qj−1

Q, but

#Qj = 4nj #Qj−1 for all odd j . Define E =
⋂∞

j=1

⋃
Q∈Qj

Q.

For odd j the λj -construction would produce a 2-dimensional set and for
even j a Cantor set of dimension νj ↗ 2. Thus, if nj is chosen large
enough (depending on Λ and n1, . . . , nj−1), it should be clear that
dimH(E ) = dimM(E ) = 2.
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Details II

When j is even, then the distance between two cubes in Qj is at least
Dj = λ−1

j `j − 2`j = `j(λ
−1
j − 2) > 0. Choose

dj = min{Dj/3, (#Qj`j)
−1/(sj−1)} > 0. If we take nj+1 (depending on Λ,

(sj), and n1, . . . , nj) to be large enough, the ratio `j+1/dj is as small as we
wish. Thus we have for all dj/2 < r < dj

H1(∂Er )

r2−1−sj
≈ #Qj`jd

sj−1
j ≤ 1,

and so the desired estimate dimS(E ) ≤ sj → 1 follows.

Finally, H2(E ) = 0, since for even j
H2(E ) ≤

∑
Q∈Qj

`(Q)2 =
(∏j−1

i=1(4λ2
i )ni
)
(4λ2

j )nj ≤ (4λ2
j )nj , and here

4λ2
j < 1 and nj can be chosen as large as we want.
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Some questions of Winter

In Remark 2.4 of [Winter 2011] the following questions were
asked/indicated:,

Is there E ⊂ Rd with Hd(E ) = 0 and dimS(E ) = d−1
d dimM(E ) ?

Yes! by our example; here dimS(E ) = d − 1 and dimM(E ) = d

If dimM(E ) = dimM(E ), is dimS(E ) = dimM(E ) ?

No! by our example. Here dimM(E ) = d . Are there examples with
dimM(E ) < d ? In a recent preprint, Rataj and Winter show that if
0 < lim infr→0Mλ

r (E ) ≤ lim supr→0Mλ
r (E ) <∞, then

dimS(E ) = dimM(E ) (= dimS(E ) ) = λ.

If dimM(E ) = dimS(E ), is dimM(E ) = dimM(E ) ?

No! Construct a compact and porous set E with
dimM(E ) < dimM(E ). Then
dimS(E ) = dimM(E ) < dimM(E ) = dimS(E ).
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What happens at d−1 ?

In all the known examples of E ⊂ Rd with dimS(E ) < dimM(E ), we have
dimS(E ) ≥ d − 1.

Is this essential? (I claim that it is.)

But why? And what really happens below d − 1 ?

Please tell me, if you have an idea.
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A. Käenmäki, J. Lehrbäck and M. Vuorinen. Dimensions, Whitney covers, and
tubular neighborhoods. Preprint (2012), arXiv:1209.0629

I. Y. Oleksiv and N. I. Pesin. Finiteness of the Hausdorff measure of level sets of
bounded subsets of a Euclidean space. Mat. Zametki, 37(3):422–431, 462, 1985.

J. Rataj and S. Winter. On volume and surface area of parallel sets. Indiana Univ.
Math. J., 59(5):1661–1685, 2010.

J. Rataj and S. Winter. Characterization of Minkowski measurability in terms of
surface area. Preprint (2011), arXiv:1111.1825v2.
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J. Lehrbäck. Neighbourhood capacities. Ann. Acad. Sci. Fenn. Math., 37:35–51,
2012.

J. Luukkainen and E. Saksman. Every complete doubling metric space carries a
doubling measure. Proc. Amer. Math. Soc., 126(2):531–534, 1998.

O. Martio and M. Vuorinen. Whitney cubes, p-capacity, and Minkowski content.
Exposition. Math., 5(1):17–40, 1987.

A. L. Vol′berg and S. V. Konyagin. On measures with the doubling condition.
Izv. Akad. Nauk SSSR Ser. Mat., 51(3):666–675, 1987.
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