Dimensions, Whitney covers, and tubular neighborhoods

Juha Lehrbäck
joint work with
Antti Käenmäki and Matti Vuorinen

Jyväskylän yliopisto

Analysis seminar, 01.10.2012, Helsinki

1. Introduction

A question

For $E \subset \mathbb{R}^{d}$, the open r-neighborhood of E is

$$
E_{r}=\left\{x \in \mathbb{R}^{d}: \operatorname{dist}(x, E)<r\right\}
$$

(aka tubular neighborhood or parallel set).
Q: How is the 'size' (and 'geometry') of E related to the 'size' of

$$
\partial E_{r}=\left\{x \in \mathbb{R}^{d}: \operatorname{dist}(x, E)=r\right\} ?
$$

(In particular, what are the right ways to measure these 'sizes' ?)
It appears that ∂E_{r} is always(?) ($d-1$)-dimensional, so one should find estimates for $\mathcal{H}^{d-1}\left(\partial E_{r}\right)$ in terms of E.

Bit of history

If $d \in\{2,3\}$ and $E \subset \mathbb{R}^{d}$ is compact, then ∂E_{r} is a $(d-1)$-Lipschitz manifold for \mathcal{H}^{1}-a.e. $r \in(0, \infty)$ [Brown 1972, $d=2$; Ferry 1975, $d=3$].

For $d \geq 4$ the above fails: there exists a compact set $E \subset \mathbb{R}^{d}$ such that ∂E_{r}, for $0<r<1$, is never a $(d-1)$-manifold. [Ferry 1975]

Oleksiv and Pesin gave in 1985 a general estimate for $\mathcal{H}^{d-1}\left(\partial E_{r}\right)$, when $E \subset \mathbb{R}^{d}$ is bounded:

$$
\mathcal{H}^{d-1}\left(\partial E_{r}\right) \leq \begin{cases}C_{1} r^{d-1}, & \text { for } r>d(E) \\ C_{2} r^{-1}, & \text { for } 0<r \leq d(E)\end{cases}
$$

Here $C_{1}=C_{1}(d) \geq 1$ and $C_{2}=C_{2}(d, d(E)) \geq 1$, and the growth orders are sharp. In particular $\mathcal{H}^{d-1}\left(\partial E_{r}\right)<\infty$ for all $r>0$.

Reliable sources rumour that related considerations have also taken place at HUMD during the 80 's.

Bit of history: The main idea

How to prove the estimate of Oleksiv and Pesin:

$$
\mathcal{H}^{d-1}\left(\partial E_{r}\right) \leq \begin{cases}C_{1} r^{d-1}, & \text { for } r>d(E) \\ C_{2} r^{-1}, & \text { for } 0<r \leq d(E)\end{cases}
$$

- If $r>2 d(E)$, take a ball $B \supset E$ of radius $d(E)$ and project ∂E_{r} to ∂B. This projection is $C(r / d(E))$-bi-Lipschitz, and thus

$$
\mathcal{H}^{d-1}\left(\partial E_{r}\right) \lesssim(r / d(E))^{d-1} \mathcal{H}^{d-1}(\partial B) \approx r^{d-1}
$$

- For $r \leq 2 d(E)$ cover B using balls B_{i} with $d\left(B_{i}\right) \approx r / 2$, and apply the previous case for $E_{i}=E \cap B_{i}$. As $\partial E_{r} \subset \bigcup_{i} \partial\left(E_{i}\right)_{r}$ and $\# B_{i} \lesssim(d(E) / r)^{d}$, we have

$$
\mathcal{H}^{d-1}\left(\partial E_{r}\right) \lesssim \sum_{i} \mathcal{H}^{d-1}\left(\partial\left(E_{i}\right)_{r}\right) \lesssim(d(E) / r)^{d} r^{d-1}=C(d(E)) r^{-1}
$$

- Such ideas appear (at least) in [Brown 1972], [Oleksiv-Pesin 1985], and [Luukkainen 1998 (with a credit to Väisälä)]

A refinement of the above idea

Count only those balls B_{i} which really intersect E
$(\rightarrow$ Minkowski content/dimension)!
Or better yet, look how much of ∂E_{r} there is at most/at least in Whitney-type balls (or cubes) B of $\mathbb{R}^{d} \backslash E$, with radii comparable to r, and then count the total number of such balls.

Before going to the details, we recall and introduce some preliminaries. At the end, we take a look at an example, which illustrates the sharpness of our results.

So here is the plan:

- Section 1: The Introduction
- Section 2: Preliminaries (on metric spaces and dimensions)
- Section 3: Whitney ball count and dimension
- Section 4: Tubular boundaries (and spherical dimension)
- Section 5: An example

Some more recent results

For more on the 'manifold problem', see e.g. [Gariepy and Pepe 1972, Fu 1985, Rataj and Zajíček 2012]

It is also true that for all but countably many $r>0$

$$
\frac{d}{d r} \mathcal{H}^{d}\left(E_{r}\right)=C \mathcal{H}^{d-1}\left(\partial E_{r}\right)
$$

[Rataj and Winter 2010] based on [Stachó 1976], and that ∂E_{r} is (d-1)-rectifiable for all $r>0$ [RW 2010].

These observations lead to a close connection between the asymptotics of

$$
\frac{\mathcal{H}^{d-1}\left(\partial E_{r}\right)}{r^{d-1-\lambda}} \quad \text { and } \quad \frac{\mathcal{H}^{d}\left(E_{r}\right)}{r^{d-\lambda}} \quad[R W \text { 2010]. }
$$

Related results will be considered in Section 4, but from a purely 'geometrical' point of view.

2. Preliminaries

the (upper) Assouad dimension

A metric space (X, d) is doubling if there is $N=N(X) \in \mathbb{N}$ so that any closed ball $B(x, r)$ of center x and radius $r>0$ can be covered by at most N balls of radius $r / 2$.

Iteration of this condition gives $C \geq 1$ and $s>0$ such that each ball $B(x, R)$ can be covered by at most $C(r / R)^{-s}$ balls of radius r for all $0<r<R<\operatorname{diam}(X)$.

The infimum of such exponents s is the (upper) Assouad dimension $\overline{\operatorname{dim}}_{\mathrm{A}}(X)$; we have the upper bound $\overline{\operatorname{dim}}_{\mathrm{A}}(X) \leq \log _{2} N$. In particular:

Lemma

A metric space X is doubling if and only if $\operatorname{dim}_{A}(X)<\infty$.

the lower Assouad dimension

Conversely to the definition of the upper Assouad dimension, we may also consider all $t>0$ for which there is a constant $c>0$ so that if $0<r<R<\operatorname{diam}(X)$, then for every $x \in X$ at least $c(r / R)^{-t}$ balls of radius r are needed to cover $B(x, R)$. We call the supremum of all such t the lower Assouad dimension of X.

The restriction metric is used to define the upper and lower Assouad dimensions of a subset $E \subset X$.

Recall that a metric space X is uniformly perfect if there exists a constant $C \geq 1$ so that for every $x \in X$ and $r>0$ we have $B(x, r) \backslash B(x, r / C) \neq \emptyset$ whenever $X \backslash B(x, r) \neq \emptyset$.

Lemma

A metric space X is uniformly perfect if and only if $\operatorname{dim}_{A}(X)>0$.

Some examples of Assouad dimensions

General idea: Assouad dimensions reflect the 'extreme' behaviour of sets and take into account all scales $0<r<d(E)$.

- If $E=\{0\} \cup[1,2] \subset \mathbb{R}$, then ${\underset{\operatorname{dim}}{A}}^{A}(E)=0$ and $\operatorname{dim}_{A}(E)=1$.
- $\operatorname{dim}_{A}(\mathbb{Z})=0$ and $\overline{\operatorname{dim}}_{A}(\mathbb{Z})=1$.
- If $S \subset \mathbb{R}^{2}$ is an infinite, locally rectifiable von Koch snowflake -type curve consisting of unit intervals, then $\operatorname{dim}_{A}(S)=1$ and $\overline{\operatorname{dim}}_{A}(E)=\log 4 / \log 3$ (flat on small scales, fractal on large scales)
- If $S \subset \mathbb{R}^{2}$ consists of infinitely many copies of the usual (fractal) von Koch snowflake curve, laid side by side, then $\operatorname{dim}_{A}(S)=1$ and $\overline{\operatorname{dim}}_{\mathrm{A}}(E)=\log 4 / \log 3$ (fractal on small scales, flat on large scales).

Metric spaces: doubling measures I

A measure μ on X is doubling if there is $C \geq 1$ so that $0<\mu(2 B) \leq C \mu(B)$ for all closed balls $B \subset X$.

Iterating, we find $c>0$ and $s \geq 0$ such that

$$
\begin{equation*}
\frac{\mu(B(y, r))}{\mu(B(x, R))} \geq c\left(\frac{r}{R}\right)^{s} \tag{1}
\end{equation*}
$$

for all $y \in B(x, R)$ and $0<r<R<d(X)$. The infimum of s satisfying (1) is called the upper regularity dimension of $\mu, \overline{\operatorname{dim}}_{\text {reg }}(\mu)$.

It is easy to see that $\overline{\operatorname{dim}}_{\mathrm{A}}(X) \leq \overline{\operatorname{dim}}_{\text {reg }}(\mu)$ whenever μ is doubling on X. In particular, if X has a doubling measure, then X is doubling.

Conversely, if X is doubling and complete, then there is a doubling measure μ on X [Luukkainen and Saksman 1998; Vol'berg and Konyagin 1987 (for compact sets)].

Metric spaces: doubling measures II

If X is uniformly perfect and μ is doubling then there is a converse to (1): there are $t>0$ and $C \geq 1$ such that

$$
\begin{equation*}
\frac{\mu(B(y, r))}{\mu(B(x, R))} \leq C\left(\frac{r}{R}\right)^{t} \tag{2}
\end{equation*}
$$

whenever $0<r<R<d(X)$ and $y \in B(x, R)$. The supremum of all t satisfying (2) is called the lower regularity dimension of $\mu, \underline{\operatorname{dim}}_{r e g}(\mu)$.

Thus $\underline{\operatorname{dim}}_{\mathrm{reg}}(\mu)>0$ if μ is doubling and X is uniformly perfect, and in fact $\operatorname{dim}_{\text {reg }}(\mu) \leq \underline{\operatorname{dim}}_{\mathrm{A}}(X)$. If X is not uniformly perfect, then it is natural to define $\underline{\operatorname{dim}}_{\mathrm{reg}}(\mu)=0$.

Measure μ (or the space X) is called (Ahlfors) s-regular, if there is $C>0$ such that

$$
\frac{1}{C} r^{s} \leq \mu(B(x, r)) \leq C r^{s}
$$

for every $x \in X$ and all $0<r<d(X)$. Then $\underline{\operatorname{dim}}_{r e g}(\mu)=\overline{\operatorname{dim}}_{r e g}(\mu)=s$.

Hausdorff and Minkowski contents

The Hausdorff (r-)content of dimension λ is

$$
\mathcal{H}_{r}^{\lambda}(E)=\inf \left\{\sum_{k} r_{k}^{\lambda}: E \subset \bigcup_{k} B\left(x_{k}, r_{k}\right), x_{k} \in E, 0<r_{k} \leq r\right\}
$$

and the Minkowski (r-)content of dimension λ is

$$
\mathcal{M}_{r}^{\lambda}(E)=\inf \left\{N r^{\lambda}: E \subset \bigcup_{k=1}^{N} B\left(x_{k}, r\right), x_{k} \in E\right\} .
$$

It is immediate that $\mathcal{H}_{r}^{\lambda}(E) \leq \mathcal{M}_{r}^{\lambda}(E)$ for each compact $E \subset X$.
The λ-Hausdorff measure of E is $\mathcal{H}^{\lambda}(E)=\lim _{r \rightarrow 0} \mathcal{H}_{r}^{\lambda}(E)$.

Hausdorff and Minkowski dimensions

The Hausdorff dimension of $E \subset X$ is

$$
\operatorname{dim}_{H}(A)=\inf \left\{\lambda>0: \mathcal{H}^{\lambda}(A)=0\right\} .
$$

The lower Minkowski dimension of $E \subset X$ is

$$
\underline{\operatorname{dim}}_{M}(E)=\inf \left\{\lambda>0: \liminf _{r \rightarrow 0} \mathcal{M}_{r}^{\lambda}(E)=0\right\}
$$

and the upper Minkowski dimension of $E \subset X$ is

$$
\overline{\operatorname{dim}}_{M}(E)=\inf \left\{\lambda>0: \limsup _{r \rightarrow 0} \mathcal{M}_{r}^{\lambda}(E)=0\right\}
$$

Notice that for each compact set $E \subset X$ we have

$$
\operatorname{dim}_{H}(E) \leq \operatorname{dim}_{M}(E) \leq \operatorname{dim}_{M}(E)
$$

where all inequalities can be strict.

Lower Assouad and Hausdorff

Lemma

If X is complete and $E \subset X$ is closed, then $\operatorname{dim}_{A}(E) \leq \operatorname{dim}_{H}(E \cap B)$ for all balls B centered at E.

Proof. If $0<t_{0}<\underline{\operatorname{dim}}_{A}(E)$, then

$$
\mathcal{M}_{r}^{t_{0}}(E \cap B(R)) \geq c_{0} R^{t_{0}} \text { for all } 0<r<R<\operatorname{diam}(E)
$$

By iteration, we find for each $0<t<t_{0}$ a Cantor-type set $C \subset E \cap B$, for which the above estimate holds with the exponent t, and thus also

$$
\begin{equation*}
\mathcal{H}_{R}^{t}(E \cap B(R)) \geq c R^{t} \text { for all } 0<r<R<\operatorname{diam}(E) \tag{3}
\end{equation*}
$$

(see [L. 2009] for details). Therefore $\operatorname{dim}_{H}(E \cap B) \geq \operatorname{dim}_{H}(C) \geq t$ and the claim follows.

In fact, for compact $E \subset X$ we have $\operatorname{dim}_{A}(E)=\inf \{t>0:(3)$ holds $\}$.
(Note however that e.g. $\underline{\operatorname{dim}}_{A}(\mathbb{Q})=1$ but $\operatorname{dim}_{H}(\mathbb{Q})=0$)

Geometric conditions

A metric space X is q-quasiconvex if there exists a constant $q \geq 1$ such that for every $x, y \in X$ there is a curve $\gamma:[0,1] \rightarrow \boldsymbol{X}$ so that $x=\gamma(0)$, $y=\gamma(1)$, and length $(\gamma) \leq q d(x, y)$.

We say that a set $E \subset X$ is (uniformly) ϱ-porous (for $0 \leq \varrho \leq 1$), if for every $x \in E$ and all $0<r<d(E)$ there exists a point $y \in X$ such that $B(y, \varrho r) \subset B(x, r) \backslash E$.

If X is s-regular and complete, then $E \subset X$ is porous if and only if there are $0<t<s$ and a t-regular set $F \subset X$ so that $E \subset F$ [JJKRRS]. In addition,

Proposition (KLV)

If X is s-regular, then there is a constant $c>0$ such that $\overline{\operatorname{dim}}_{A}(E) \leq s-c \varrho^{s}$ for all ϱ-porous sets $E \subset X$.

Assouad dimensions and geometric conditions

- A set $E \subset X$ is doubling if and only if $\operatorname{dim}_{A}(E)<\infty$.
- A set $E \subset X$ is uniformly perfect if and only if $\operatorname{dim}_{A}(E)>0$.
- Assume that X is s-regular.

A set $E \subset X$ is porous if and only if $\overline{\operatorname{dim}}_{\mathrm{A}}(E)<s$.

- If μ is a doubling measure on X, then

$$
\operatorname{dim}_{\mathrm{reg}}(\mu) \leq \operatorname{dim}_{\mathrm{A}}(X) \leq \operatorname{\operatorname {dim}}_{\mathrm{A}}(X) \leq \overline{\operatorname{dim}}_{\mathrm{reg}}(\mu)
$$

- If $E \subset X$ is compact, then

$$
\operatorname{dim}_{A}(E) \leq \operatorname{dim}_{H}(E) \leq \underline{\operatorname{dim}}_{M}(E) \leq \operatorname{dim}_{M}(E) \leq \overline{\operatorname{dim}}_{A}(E)
$$

Whitney cover

If $\Omega \subset X$ is open, we can cover Ω with a countable collection $\mathcal{W}(\Omega)$ of closed balls $B_{i}=B\left(x_{i}, \frac{1}{8} \operatorname{dist}\left(x_{i}, X \backslash \Omega\right)\right), x_{i} \in \Omega$, such that the overlap of these balls is uniformly bounded.

For instance, we can use the $5 r$-covering lemma for the sets

$$
\left\{x \in \Omega: 2^{-k-1} \leq \operatorname{dist}(x, X \backslash \Omega)<2^{-k}\right\}, \quad k \in \mathbb{Z}
$$

One can use any $0<\delta \leq \frac{1}{2}$ instead of $\frac{1}{8}$ above, but for large δ some modifications in some of our results are necessary.

For $k \in \mathbb{Z}$ and $A \subset X$ we set

$$
\mathcal{W}_{k}(\Omega ; A)=\left\{B\left(x_{i}, r_{i}\right) \in \mathcal{W}(\Omega): 2^{-k-1}<r_{i} \leq 2^{-k} \text { and } A \cap B\left(x_{i}, r_{i}\right) \neq \emptyset\right\}
$$

$$
\text { and } \mathcal{W}_{k}(\Omega)=\mathcal{W}_{k}(\Omega ; X)
$$

3. Whitney ball count and dimension

Background and motivating questions

In [Martio-Vuorinen 1987], the relation between upper Minkowski dimension and upper bounds for Whitney cube count was considered for compact $E \subset \mathbb{R}^{d}$. In particular, it was shown that if $\mathcal{H}^{d}(E)=0$, then

$$
\overline{\operatorname{dim}}_{M}(E)=\inf \left\{\lambda \geq 0: \# \mathcal{W}_{k}^{C}\left(\mathbb{R}^{d} \backslash E\right) \leq C 2^{\lambda k} \text { for all } k \geq k_{0}\right\}
$$

or, equivalently, $\overline{\operatorname{dim}}_{M}(E)=\lim \sup _{k \rightarrow \infty} \frac{1}{k} \log _{2} \# \mathcal{W}_{k}^{C}\left(\mathbb{R}^{d} \backslash E\right)$.
The following questions are now relevant:

- Does this hold in metric spaces for Whitney balls?
- Does something similar hold for lower Minkowski dimension?
- Does something similar hold for Assouad dimensions? Local Whitney ball count?

From now on, X is a doubling metric space.

Upper bound for Whitney ball count..

Lemma

Let $E \subset X$ be closed set and fix $0<\delta<1$. If $B_{0}=B(w, R)$ with $w \in E$, $0<r<R$, and $\left\{B\left(w_{j}, r\right)\right\}_{j=1}^{N}, w_{j} \in E$, is a cover of $E \cap 2 B_{0}$, then $\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \leq C N$ for all $\delta r \leq 2^{-k} \leq r$. (Here $C=C(X, \delta)$.)

Idea: If $B\left(x, r^{\prime}\right) \in \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right)$ then $B\left(x, r^{\prime}\right) \subset B\left(w_{j}, 10 r\right)$ for some j. It follows (with a rather simple argument using doubling and the bounded overlap of \mathcal{W}-balls) that $\# \mathcal{W}_{k}\left(X \backslash E ; B_{0} \cap B\left(w_{j}, 10 r\right)\right) \leq C \delta^{-s}$, where $s>\overline{\operatorname{dim}}_{\mathrm{A}}(X)$.

Since each ball in $\mathcal{W}_{k}\left(X \backslash E ; B_{0}\right)$ is in some $B\left(w_{j}, 10 r\right)$, we conclude

$$
\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \leq \sum_{j=1}^{N} \# \mathcal{W}_{k}\left(X \backslash E ; B_{0} \cap B\left(w_{j}, 10 r\right)\right) \leq C N \delta^{-s}
$$

..and consequences of $\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \leq C N$

- If $E \subset X$ is closed and $\operatorname{dim}_{A}(E)<\lambda$, then

$$
\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \leq C 2^{\lambda k} R^{\lambda}
$$

for all $B_{0}=B(w, R)$, with $0<R<d(E)$ and $w \in E, k>-\log _{2} R$.

- If $E \subset X$ is compact and $\overline{\operatorname{dim}}_{M}(E)<\lambda$ (or $\left.\lim \sup \mathcal{M}_{r}^{\lambda}(E)<\infty\right)$ then $\# \mathcal{W}_{k}(X \backslash E) \leq C 2^{\lambda k}$ for all $k \geq k_{0}$.
- If $E \subset X$ is closed and for each $B_{0}=B(w, R)$ with $0<R<d(E)$ and $w \in E$

$$
\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \geq c 2^{\lambda k} R^{\lambda}
$$

for all $k \geq-\log _{2} R+\ell$, then $\operatorname{dim}_{A}(E) \geq \lambda$.

- If $E \subset X$ is compact and $\# \mathcal{W}_{k}(X \backslash E) \geq c 2^{\lambda k}$ for all $k \geq k_{0}$, then $\operatorname{dim}_{M}(E) \geq \lambda\left(\right.$ in fact $\left.\liminf _{r \rightarrow 0} \mathcal{M}_{r}^{\lambda}(E)>0\right)$

Lower bound for ball count..

Lemma

Assume that X is q-quasiconvex and $E \subset X$ is closed and ϱ-porous. Then there is $c>0$ such that if $B_{0}=B(w, R)$ with $0<R<\operatorname{diam}(E)$ and $w \in E, 0<r<R / 2 q$, and $\left\{B\left(w_{j}, r / 2\right)\right\}_{j=1}^{N}, w_{j} \in E$, is a maximal packing of $E \cap \frac{1}{2} B_{0}$, then $\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \geq c N$, where $k \in \mathbb{Z}$ is such that @r $/ 10<2^{-k} \leq \varrho r / 5$.

Idea: By porosity, there is $y_{j} \in B\left(w_{j}, r\right)$ satisfying $\operatorname{dist}\left(y_{j}, E\right) \geq \varrho r$. By quasiconvexity, there is $\gamma_{j}:[0,1] \rightarrow B\left(w_{j}, q r\right)$ connecting y_{j} and w_{j}. By continuity, find $x_{j} \in \gamma_{j}([0,1])$ with $\operatorname{dist}\left(x_{j}, E\right)=5 \cdot 2^{-k} \leq \varrho r$. Then $x_{j} \in B\left(z_{j}, r_{j}\right) \in \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right)$, where $2^{-k-1}<r_{j} \leq 2^{-k}$. Since the balls $\left\{B\left(w_{j}, r / 2\right)\right\}_{j=1}^{N}$ are pairwise disjoint, the overlap of the balls $\left\{B\left(w_{j}, q r+\varrho r\right)\right\}_{j=1}^{N}$ is uniformly bounded by M (by doubling). Since each ball $B\left(w_{j}, q r+\varrho r\right)$ contains a ball from $\mathcal{W}_{k}\left(X \backslash E ; B_{0}\right)$, we conclude that $N \leq M \# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right)$.

..and consequences of $\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \geq c N$

- If $E \subset X$ (here X is q-convex) is closed, porous, and $\operatorname{dim}_{A}(E)>\lambda$, then

$$
\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \geq c 2^{\lambda k} R^{\lambda}
$$

for all $B_{0}=B(w, R)$, with $0<R<d(E)$ and $w \in E$, and all $k>-\log _{2} R+\ell$.

- If $E \subset X$ is compact, porous, and $\underline{\operatorname{dim}}_{M}(E)>\lambda\left(\liminf _{r \rightarrow 0} \mathcal{M}_{r}^{\lambda}(E)>0\right)$ then $\# \mathcal{W}_{k}(X \backslash E) \geq c 2^{\lambda k}$ for all $k \geq k_{0}$.
- If $E \subset X$ is closed, porous, and for all $B_{0}=B(w, R)$ with $0<R<d(E)$ and $w \in E$

$$
\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \leq C 2^{\lambda k} R^{\lambda}
$$

and for all $k \geq-\log _{2} R$, then $\overline{\operatorname{dim}}_{\mathrm{A}}(E) \leq \lambda$.

- If $E \subset X$ is compact and $\# \mathcal{W}_{k}(X \backslash E) \leq C 2^{\lambda k}$ for all $k \geq k_{0}$, then $\overline{\operatorname{dim}}_{M}(E) \leq \lambda$ (in fact $\left.\lim \sup \mathcal{M}_{r}^{\lambda}(E)<\infty\right)$

Characterization for Minkowski dimensions

If $E \subset X$ is compact (and X quasiconvex), then

- $\operatorname{dim}_{M}(E)<\lambda \Longrightarrow \# \mathcal{W}_{k}(X \backslash E) \leq C 2^{\lambda k}$ for all $k \geq k_{0}$.
- $\# \mathcal{W}_{k}(X \backslash E) \geq c 2^{\lambda k}$ for all $k \geq k_{0} \Longrightarrow \operatorname{dim}_{M}(E) \geq \lambda$.
- $\operatorname{dim}_{M}(E)>\lambda \Longrightarrow \# \mathcal{W}_{k}(X \backslash E) \geq c 2^{\lambda k}$ for all $k \geq k_{0}$ if E is porous.
- $\# \mathcal{W}_{k}(X \backslash E) \leq C 2^{\lambda k}$ for all $k \geq k_{0} \Longrightarrow \overline{\operatorname{dim}}_{M}(E) \leq \lambda$ if E is porous.

In particular, if X is quasiconvex and $E \subset X$ is compact and porous, then

$$
\begin{aligned}
& \operatorname{dim}_{M}(E)=\limsup _{k \rightarrow \infty} \frac{1}{k} \log _{2} \# \mathcal{W}_{k}(X \backslash E) \\
& \underline{\operatorname{dim}}_{M}(E)=\liminf _{k \rightarrow \infty} \frac{1}{k} \log _{2} \# \mathcal{W}_{k}(X \backslash E)
\end{aligned}
$$

The porosity assumption is more or less crucial here (cf. the example of Section 5). However, if X is s-regular, then the characterization of the upper Minkowski dimension holds under weaker assumptions (we will get back to this soon).

Non-quasiconvex case and Euclidean Whitney balls

Quasiconvexity (as such) is not that essential in the previous results; in particular, the existence of rectifiable curves is not necessary. Even without any local connectivity properties, we have (for instance) the following:

If $E \subset X$ is compact and ϱ-porous, there is $\ell \in \mathbb{N}$ (depending on ϱ) such that if $\underline{\operatorname{dim}}_{M}(E)>\lambda$, then

$$
\sum_{j=k}^{k+\ell} \# \mathcal{W}_{j}\left(X \backslash E ; B_{0}\right) \geq c 2^{\lambda k} \text { for all } k \geq k_{0}
$$

Actually, a similar modification is needed for the Euclidean Whitney cube decomposition $\mathcal{W}^{C}\left(\mathbb{R}^{d} \backslash E\right)$ (with $d(Q) \leq d\left(Q, \mathbb{R}^{d} \backslash E\right) \leq 4 d(Q)$), where certain (but not two consecutive) generations of cubes may be 'missing'. For instance: if $E \subset \mathbb{R}^{d}$ is compact and porous, then

$$
\operatorname{dim}_{M}(E)=\liminf _{k \rightarrow \infty} \frac{1}{k} \log _{2} \#\left(\mathcal{W}_{k}^{C}\left(\mathbb{R}^{d} \backslash E\right) \cup \mathcal{W}_{k+1}^{C}\left(\mathbb{R}^{d} \backslash E\right)\right)
$$

Upper dimensions in s-regular space

Under the existence of an s-regular measure μ on X, we can slightly improve the previous results:

- If $E \subset X$ is closed, $\mu(E)=0$, and for all $B_{0}=B(w, R)$ with $0<R<d(E)$ and $w \in E$ we have $\# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) \leq C 2^{\lambda k} R^{\lambda}$ for all $k \geq-\log _{2} R$, then $\operatorname{dim}_{\mathrm{A}}(E) \leq \lambda$.
- If $E \subset X$ is compact, $\mu(E)=0$, and $\# \mathcal{W}_{k}(X \backslash E) \leq C 2^{\lambda k}$ for all $k \geq k_{0}$, then $\operatorname{dim}_{M}(E) \leq \lambda$.

The condition $\mu(E)=0$ can not be omitted; consider $B(0,1) \subset \mathbb{R}^{n}$.
Since always $\overline{\operatorname{dim}}_{M}(E) \geq \lim \sup _{k \rightarrow \infty} \frac{1}{k} \log _{2} \# \mathcal{W}_{k}(X \backslash E)$, we conclude that if $\mu(E)=0$, then $\overline{\operatorname{dim}}_{M}(E)=\lim \sup _{k \rightarrow \infty} \frac{1}{k} \log _{2} \# \mathcal{W}_{k}(X \backslash E)$. ($\ln \mathbb{R}^{d}$, this follows from [MV 1987].)

If μ is a non-regular (but doubling) measure on X, then we obtain a weaker result for Minkowski and Assouad codimensions.

Proof of the s-regular case

Fix a ball $B_{0}=B(w, R)$ with $0<R<d(E)$ and $w \in E$, and take $k_{1} \in \mathbb{Z}$ such that $2^{-k_{1}} \leq r<2^{-k_{1}+1}$. Since $E_{r} \cap B_{0} \subset E \cup \bigcup_{k=k_{1}}^{\infty} \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right)$ and $\mu(B) \approx 2^{-s k}$ for $B \in \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right)$, we obtain

$$
\begin{aligned}
\mu\left(E_{r} \cap B_{0}\right) & \leq \mu(E)+C \sum_{k=k_{1}}^{\infty} \# \mathcal{W}_{k}\left(X \backslash E ; B_{0}\right) 2^{-s k} \\
& \leq C \sum_{k=k_{1}}^{\infty} 2^{(\lambda-s) k} R^{\lambda} \leq C 2^{-k_{1}(s-\lambda)} R^{\lambda} \approx r^{s-\lambda} R^{\lambda}
\end{aligned}
$$

(we may assume $\lambda<s$). Using the s-regularity and considering maximal packings, it follows that $E \cap B_{0}$ can be covered by $C(r / R)^{-\lambda}$ balls of radius r, and thus $\overline{\operatorname{dim}}_{\mathrm{A}}(E) \leq \lambda$.

For the upper Minkowski dimension, the claim follows with a similar computation.

4. Tubular boundaries and spherical dimension

Minkowski dimension in \mathbb{R}^{d}

In \mathbb{R}^{d} (or in fact in any d-regular space) the Minkowski dimensions of a compact $E \subset \mathbb{R}^{d}$ can be defined equivalently as

$$
\underline{\operatorname{dim}}_{M}(E)=\inf \left\{\lambda \geq 0: \liminf _{r \downarrow 0} \frac{\mathcal{H}^{d}\left(E_{r}\right)}{r^{d-\lambda}}=0\right\}
$$

and

$$
\overline{\operatorname{dim}}_{M}(E)=\inf \left\{\lambda \geq 0: \limsup _{r \downarrow 0} \frac{\mathcal{H}^{d}\left(E_{r}\right)}{r^{d-\lambda}}=0\right\} .
$$

If $\mathcal{H}^{d}(E)=0$, then for $\overline{\operatorname{dim}}_{M}(E)$ we can replace E_{r} by $E_{2 r} \backslash E_{r}$; for $\operatorname{dim}_{M}(E)$ we need in addition that E is porous.

Minkowski dimension in \mathbb{R}^{d}

In \mathbb{R}^{d} (or in fact in any d-regular space) the Minkowski dimensions of a compact $E \subset \mathbb{R}^{d}$ can be defined equivalently as

$$
\underline{\operatorname{dim}}_{M}(E)=\inf \left\{\lambda \geq 0: \liminf _{r \downarrow 0} \frac{\mathcal{H}^{d}\left(E_{r}\right)}{r^{d-\lambda}}=0\right\}
$$

and

$$
\overline{\operatorname{dim}}_{M}(E)=\inf \left\{\lambda \geq 0: \limsup _{r \downarrow 0} \frac{\mathcal{H}^{d}\left(E_{r}\right)}{r^{d-\lambda}}=0\right\} .
$$

If $\mathcal{H}^{d}(E)=0$, then for $\overline{\operatorname{dim}}_{M}(E)$ we can replace E_{r} by $E_{2 r} \backslash E_{r}$; for $\operatorname{dim}_{M}(E)$ we need in addition that E is porous.

But what happens if we replace $E_{2 r} \backslash E_{r}$ by ∂E_{r} ?

Spherical dimension

Rataj and Winter defined the lower spherical dimension of a compact $E \subset \mathbb{R}^{d}$ as

$$
\underline{\operatorname{dim}}_{S}(E)=\inf \left\{\lambda \geq 0: \liminf _{r \downarrow 0} \frac{\mathcal{H}^{d-1}\left(\partial E_{r}\right)}{r^{d-1-\lambda}}=0\right\}
$$

and the upper spherical dimension as

$$
\overline{\operatorname{dim}}_{S}(E)=\inf \left\{\lambda \geq 0: \limsup _{r \downarrow 0} \frac{\mathcal{H}^{d-1}\left(\partial E_{r}\right)}{r^{d-1-\lambda}}=0\right\}
$$

If $\mathcal{H}^{d}(E)=0$, then actually $\overline{\operatorname{dim}}_{S}(E)=\overline{\operatorname{dim}}_{M}(E)$, but

$$
\begin{equation*}
\frac{d-1}{d} \underline{\operatorname{dim}}_{M}(E) \leq \underline{\operatorname{dim}}_{S}(E) \leq \underline{\operatorname{dim}}_{M}(E), \tag{4}
\end{equation*}
$$

where the bounds are sharp (Winter: ' $<$ ' sharp in the lower bound; KLV: can have ' $=$ ' in the lower bound)

Spherical dimension: our contribution

Theorem

If $E \subset \mathbb{R}^{d}$ is a compact set, then

$$
\begin{aligned}
& \operatorname{dim}_{S}(E)=\liminf _{k \rightarrow \infty} \frac{1}{k} \log _{2} \# \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E\right) \\
& \overline{\operatorname{dim}}_{\mathrm{S}}(E)=\limsup _{k \rightarrow \infty} \frac{1}{k} \log _{2} \# \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E\right) .
\end{aligned}
$$

Corollary

If $E \subset \mathbb{R}^{d}$ is compact and porous, then $\underline{\operatorname{dim}}_{S}(E)={\underset{\operatorname{dim}}{M}}_{M}(E)$ (and if $\mathcal{H}^{d}(E)=0$, then $\overline{\operatorname{dim}}_{S}(E)=\overline{\operatorname{dim}}_{M}(E)[R W]$).

Proposition

For each $d \in \mathbb{N}$ there exists a compact set $E \subset \mathbb{R}^{d}$ with $\mathcal{H}^{d}(E)=0$, $\operatorname{dim}_{M}(E)=d$, and $\operatorname{dim}_{S}(E)=d-1$.

Main geometric lemmas

Lemma (1)

If $E \subset \mathbb{R}^{d}$ is a closed set, $k \in \mathbb{Z}$, and $B \in \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E\right)$, then

$$
\mathcal{H}^{d-1}\left(\partial E_{r} \cap B\right) \leq C 2^{-k(d-1)}
$$

for all $r>0$, where $C \geq 1$ depends only on d.
Lemma (2)
If $E \subset \mathbb{R}^{d}$ is a closed set, $k \in \mathbb{Z}$, and $B \in \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E\right)$, then

$$
\mathcal{H}^{d-1}\left(\partial E_{r} \cap 8 B\right) \geq c r^{d-1}
$$

for all $2^{-k-1} \leq r \leq 2^{-k}$, where $c>0$ depends only on d.

Main estimates for $\mathcal{H}^{d-1}\left(\partial E_{r}\right)$

Let $E \subset \mathbb{R}^{d}$ be a closed set, and let B_{0} be a closed ball centered at E. If $k \in \mathbb{Z}$, and $2^{-(k+1)}<r \leq 2^{-k}$, then

$$
\mathcal{H}^{d-1}\left(\partial E_{r} \cap B_{0}\right) \leq C r^{d-1} \sum_{j=k+2}^{k+4} \# \mathcal{W}_{j}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right)
$$

and

$$
\mathcal{H}^{d-1}\left(\partial E_{r} \cap 3 B_{0}\right) \geq c r^{d-1} \# \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right)
$$

where $C \geq 1$ and $c>0$ depend only on d.
In particular, for each compact set $E \subset \mathbb{R}^{d}$

$$
c r^{d-1} \# \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E\right) \leq \mathcal{H}^{d-1}\left(\partial E_{r}\right) \leq C r^{d-1} \sum_{j=k+2}^{k+4} \# \mathcal{W}_{j}\left(\mathbb{R}^{d} \backslash E\right)
$$

where $2^{-(k+1)}<r \leq 2^{-k}$, and the constants $c, C \geq 0$ depend only on the dimension d. The characterizations of spherical dimensions follow.

Proofs of the main estimates

(1) Let $k \in \mathbb{Z}$ and $2^{-(k+1)}<r \leq 2^{-k}$. If $B=B\left(x, r_{0}\right) \in \mathcal{W}_{j}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right)$ and $\partial E_{r} \cap B \neq \emptyset$, then $2^{-j-1}<r_{0} \leq r / 7<2^{-k-2}$ and $2^{-k-5}<r / 9 \leq r_{0} \leq 2^{-j}$. Thus

$$
\partial E_{r} \cap B_{0} \subset \bigcup_{j=k+2}^{k+4} \mathcal{W}_{j}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right)
$$

and, consequently, by Lemma (1),

$$
\begin{aligned}
\mathcal{H}^{d-1}\left(\partial E_{r} \cap B_{0}\right) & \leq \sum_{j=k+2}^{k+4} \sum_{B \in \mathcal{W}_{j}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right)} \mathcal{H}^{d-1}\left(\partial E_{r} \cap B\right) \\
& \leq C \sum_{j=k+2}^{k+4} \# \mathcal{W}_{j}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right) 2^{-j(d-1)}
\end{aligned}
$$

Proofs of the main estimates

(2) Let $k \in \mathbb{N}$, and $2^{-k-1}<r \leq 2^{-k}$. The overlap of the balls $8 B$, for $B \in \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right)$, is uniformly bounded by a constant $C_{1} \geq 1$. Moreover, we have for these balls that $8 B \subset 3 B_{0}$. Thus Lemma (2) yields that

$$
\begin{aligned}
\mathcal{H}^{d-1}\left(\partial E_{r} \cap 3 B_{0}\right) & \geq C \sum_{B \in \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right)} \mathcal{H}^{d-1}\left(\partial E_{r} \cap 8 B\right) \\
& \geq C r^{d-1} \# \mathcal{W}_{k}\left(\mathbb{R}^{d} \backslash E ; B_{0}\right)
\end{aligned}
$$

as desired.

Conclusion for Minkowski contents

Proposition

(1) If $E \subset \mathbb{R}^{d}$ is compact and $\lambda \geq 0$, then for all $r>0$

$$
\mathcal{H}^{d-1}\left(\partial E_{r}\right) \leq C_{r}^{d-1-\lambda} \mathcal{M}_{r}^{\lambda}(E)
$$

(2) If $E \subset \mathbb{R}^{d}$ is compact and ϱ-porous, and $\lambda \geq 0$, then for all $0<r<\varrho \operatorname{diam}(E) / 5$

$$
\mathcal{H}^{d-1}\left(\partial E_{r}\right) \geq c r^{d-1-\lambda} \mathcal{M}_{10 r / \varrho}^{\lambda}(E)
$$

Corollary

If $E \subset \mathbb{R}^{d}$ is compact and s-regular for $0<s<d$, then

$$
c r^{d-1-s} \leq \mathcal{H}^{d-1}\left(\partial E_{r}\right) \leq C r^{d-1-s} \quad \text { for all } 0<r<r_{0} .
$$

Conclusion for Assouad dimensions

Here $E \subset \mathbb{R}^{d}$ is closed and $B_{0}=B(w, R)$, with $0<R<d(E)$ and $w \in E$.

Corollary

(1) $\overline{\operatorname{dim}}_{A}(E)<\lambda$
$\Longrightarrow \mathcal{H}^{d-1}\left(\partial E_{r} \cap B_{0}\right) \leq C r^{d-1}(r / R)^{-\lambda} \quad$ for all $B_{0}, 0<r<R$.
(2) $\mathcal{H}^{d-1}\left(\partial E_{r} \cap B_{0}\right) \geq c r^{d-1}(r / R)^{-\lambda} \quad$ for all $B_{0}, 0<r<\delta R$ $\Longrightarrow \operatorname{dim}_{A}(E) \geq \lambda$.
(3) If $\mathcal{H}^{d}(E)=0$, then

$$
\begin{aligned}
\mathcal{H}^{d-1}\left(\partial E_{r} \cap B_{0}\right) & \leq C r^{d-1}(r / R)^{-\lambda} \quad \text { for all } B_{0}, 0<r<R \\
\Longrightarrow \quad \operatorname{dim}_{A}(E) & \leq \lambda .
\end{aligned}
$$

(4) If E is porous, then $\operatorname{dim}_{A}(E)>\lambda$

$$
\Longrightarrow \quad \mathcal{H}^{d-1}\left(\partial E_{r} \cap B_{0}\right) \geq c r^{d-1}(r / R)^{-\lambda} \quad \text { for all } B_{0}, 0<r<\delta R .
$$

5. An example

The goal and the idea of the construction

We construct a set $E \subset \mathbb{R}^{2}$ with $\mathcal{H}^{2}(E)=0$ and $\operatorname{dim}_{H}(E)=\operatorname{dim}_{M}(E)=2$, but $\operatorname{dim}_{\mathrm{S}}(E)=1$. This example can be easily generalized to all $\mathbb{R}^{d}, d \geq 1$, with dimensions $\operatorname{dim}_{M}(E)=d$ and $\operatorname{dim}_{S}(E)=d-1$.
(Such E is necessarily non-porous).
The idea is to use a typical 'alternating' Cantor-type construction, where we have
(a) 'thick' generations of squares which guarantee the loss of porosity and give Minkowski dimension 2 for the resulting set E
and
(b) 'thin' generations which make E to be of zero measure (but not too thin so that $\operatorname{dim}_{\mathrm{H}}(E)=2$).

Details I

We use the following λ-operation:
(λ) If \mathcal{Q} is a collection of rectangles, we replace each $Q \in \mathcal{Q}$ by four rectangles of side-length $\lambda \ell(Q)$ placed in the corners of Q.

Let $\Lambda=\left(\lambda_{j}\right)_{j=1}^{\infty}$, with $\lambda_{j}=\frac{1}{2}$ for odd j and $\frac{1}{4} \leq \lambda_{j}=\left(\frac{1}{2}\right)^{1+1 / j}<\frac{1}{2}$ for even j. Let $\left(s_{j}\right)_{j=1}^{\infty}$ be such that $s_{j}>1$ for all $j \in \mathbb{N}$ and $\lim _{j \rightarrow \infty} s_{j}=1$. We choose $\left(n_{j}\right)_{j=1}^{\infty}, n_{j} \in \mathbb{N}$, to be such that n_{j+1} is much bigger than $\sum_{i=1}^{j} n_{i}$.

Set $\mathcal{Q}_{0}=\left\{[0,1]^{2}\right\}$ and for each $j \in \mathbb{N}$ construct \mathcal{Q}_{j} recursively from \mathcal{Q}_{j-1} by applying the λ_{j}-operation n_{j} times. Then $\bigcup_{Q \in \mathcal{Q}_{j}} Q=\bigcup_{Q \in \mathcal{Q}_{j-1}} Q$, but $\# \mathcal{Q}_{j}=4^{n_{j}} \# \mathcal{Q}_{j-1}$ for all odd j. Define $E=\bigcap_{j=1}^{\infty} \bigcup_{Q \in \mathcal{Q}_{j}} Q$.

For odd j the λ_{j}-construction would produce a 2-dimensional set and for even j a Cantor set of dimension $\nu_{j} \nearrow 2$. Thus, if n_{j} is chosen large enough (depending on Λ and n_{1}, \ldots, n_{j-1}), it should be clear that $\operatorname{dim}_{\mathrm{H}}(E)=\operatorname{dim}_{\mathrm{M}}(E)=2$.

Details II

When j is even, then the distance between two cubes in \mathcal{Q}_{j} is at least $D_{j}=\lambda_{j}^{-1} \ell_{j}-2 \ell_{j}=\ell_{j}\left(\lambda_{j}^{-1}-2\right)>0$. Choose $d_{j}=\min \left\{D_{j} / 3,\left(\# \mathcal{Q}_{j} \ell_{j}\right)^{-1 /\left(s_{j}-1\right)}\right\}>0$. If we take n_{j+1} (depending on Λ, $\left(s_{j}\right)$, and $\left.n_{1}, \ldots, n_{j}\right)$ to be large enough, the ratio ℓ_{j+1} / d_{j} is as small as we wish. Thus we have for all $d_{j} / 2<r<d_{j}$

$$
\frac{\mathcal{H}^{1}\left(\partial E_{r}\right)}{r^{2-1-s_{j}}} \approx \# \mathcal{Q}_{j} \ell_{j} d_{j}^{s_{j}-1} \leq 1
$$

and so the desired estimate $\underline{\operatorname{dim}}_{S}(E) \leq s_{j} \rightarrow 1$ follows.
Finally, $\mathcal{H}^{2}(E)=0$, since for even j
$\mathcal{H}^{2}(E) \leq \sum_{Q \in \mathcal{Q}_{j}} \ell(Q)^{2}=\left(\prod_{i=1}^{j-1}\left(4 \lambda_{i}^{2}\right)^{n_{i}}\right)\left(4 \lambda_{j}^{2}\right)^{n_{j}} \leq\left(4 \lambda_{j}^{2}\right)^{n_{j}}$, and here
$4 \lambda_{j}^{2}<1$ and n_{j} can be chosen as large as we want.

Some questions of Winter

In Remark 2.4 of [Winter 2011] the following questions were asked/indicated:,

- Is there $E \subset \mathbb{R}^{d}$ with $\mathcal{H}^{d}(E)=0$ and $\underline{\operatorname{dim}}_{S}(E)=\frac{d-1}{d} \underline{\operatorname{dim}}_{M}(E)$?
- If $\operatorname{dim}_{M}(E)=\overline{\operatorname{dim}}_{M}(E)$, is $\operatorname{dim}_{S}(E)=\operatorname{dim}_{M}(E)$?
- If $\underline{\operatorname{dim}}_{M}(E)=\underline{\operatorname{dim}}_{S}(E)$, is $\underline{\operatorname{dim}}_{M}(E)=\overline{\operatorname{dim}}_{M}(E)$?

Some questions of Winter

In Remark 2.4 of [Winter 2011] the following questions were asked/indicated:,

- Is there $E \subset \mathbb{R}^{d}$ with $\mathcal{H}^{d}(E)=0$ and $\operatorname{dim}_{S}(E)=\frac{d-1}{d} \operatorname{dim}_{M}(E)$?

Yes! by our example; here ${\underset{\operatorname{dim}}{S}}(E)=d-1$ and $\underline{\operatorname{dim}}_{M}(E)=d$

- If $\operatorname{dim}_{M}(E)=\overline{\operatorname{dim}}_{M}(E)$, is $\operatorname{dim}_{S}(E)=\operatorname{dim}_{M}(E)$?

No! by our example. Here $\operatorname{dim}_{M}(E)=d$. Are there examples with $\operatorname{dim}_{M}(E)<d$? In a recent preprint, Rataj and Winter show that if $0<\lim \inf _{r \rightarrow 0} \mathcal{M}_{r}^{\lambda}(E) \leq \lim \sup _{r \rightarrow 0} \mathcal{M}_{r}^{\lambda}(E)<\infty$, then $\operatorname{dim}_{S}(E)=\operatorname{dim}_{M}(E)\left(=\overline{\operatorname{dim}}_{S}(E)\right)=\lambda$.

- If $\operatorname{dim}_{M}(E)=\operatorname{dim}_{S}(E)$, is $\operatorname{dim}_{M}(E)=\overline{\operatorname{dim}}_{M}(E)$?

No! Construct a compact and porous set E with $\operatorname{dim}_{M}(E)<\operatorname{dim}_{M}(E)$. Then $\underline{\operatorname{dim}}_{\mathrm{S}}(E)=\underline{\operatorname{dim}}_{\mathrm{M}}(E)<\overline{\operatorname{dim}}_{\mathrm{M}}(E)=\overline{\operatorname{dim}}_{\mathrm{S}}(E)$.

What happens at $d-1$?

In all the known examples of $E \subset \mathbb{R}^{d}$ with $\underline{\operatorname{dim}}_{S}(E)<\underline{\operatorname{dim}}_{M}(E)$, we have $\operatorname{dim}_{S}(E) \geq d-1$.

Is this essential? (I claim that it is.)
But why? And what really happens below $d-1$?
Please tell me, if you have an idea.

Some references: Parallel sets

M. Brown. Sets of constant distance from a planar set. Michigan Math. J., 19:321-323, 1972.
S. Ferry. When ϵ-boundaries are manifolds. Fund. Math., 90(3):199-210, 1975/76.
A. Käenmäki, J. Lehrbäck and M. Vuorinen. Dimensions, Whitney covers, and tubular neighborhoods. Preprint (2012), arXiv:1209.0629
I. Y. Oleksiv and N. I. Pesin. Finiteness of the Hausdorff measure of level sets of bounded subsets of a Euclidean space. Mat. Zametki, 37(3):422-431, 462, 1985.
J. Rataj and S. Winter. On volume and surface area of parallel sets. Indiana Univ. Math. J., 59(5):1661-1685, 2010.
J. Rataj and S. Winter. Characterization of Minkowski measurability in terms of surface area. Preprint (2011), arXiv:1111.1825v2.
L. L. Stachó. On the volume function of parallel sets. Acta Sci. Math. (Szeged), 38(3-4):365-374, 1976.
S. Winter. Lower S-dimension of fractal sets. J. Math. Anal. Appl., 375(2):467-477, 2011.

Some references:

More on parallel sets

J. H. G. Fu. Tubular neighborhoods in Euclidean spaces. Duke Math. J., 52(4):1025-1046, 1985.
R. Gariepy and W. D. Pepe. On the level sets of a distance function in a Minkowski space. Proc. Amer. Math. Soc., 31:255-259, 1972.
P. JÄrvi. On the behavior of meromorphic functions around some nonisolated singularities. Ann. Acad. Sci. Fenn. Ser. A / Math., 19(2):367-374, 1994.
J. Rataj and L. Zajíček. Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces. Houston J. Math., 38(2):445-467, 2012.

On dimensions:

P. Assouad. Plongements lipschitziens dans \mathbf{R}^{n}. Bull. Soc. Math. France, 111(4):429-448, 1983.
G. Bouligand. Ensembles impropres et nombre dimensionnel. Bull. Sci. Math., 52:320-344 and 361-376, 1928.
J. Luukkainen. Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math. Soc., 35(1):23-76, 1998.

Some references: Metric spaces and geometric structures

E. Järvenpä̈̈, M. Järvenpää, A. Käenmäki, T. Rajala, S. Rogovin, and V. Suomala. Packing dimension and Ahlfors regularity of porous sets in metric spaces. Math. Z., 266(1):83-105, 2010.
P. JÄrvi and M. Vuorinen. Uniformly perfect sets and quasiregular mappings. J. London Math. Soc. (2), 54(3):515-529, 1996.
A. Käenmäki. Porosity and regularity in metric measure spaces. Real Anal. Exchange, (31st Summer Symposium Conference):245-250, 2007.
J. Lehrbäck. Necessary conditions for weighted pointwise Hardy inequalities. Ann. Acad. Sci. Fenn. Math., 34(2):437-446, 2009.
J. Lehrbäck. Neighbourhood capacities. Ann. Acad. Sci. Fenn. Math., 37:35-51, 2012.
J. Luukkainen and E. Saksman. Every complete doubling metric space carries a doubling measure. Proc. Amer. Math. Soc., 126(2):531-534, 1998.
O. Martio and M. Vuorinen. Whitney cubes, p-capacity, and Minkowski content. Exposition. Math., 5(1):17-40, 1987.
A. L. Vol'berg and S. V. Konyagin. On measures with the doubling condition. Izv. Akad. Nauk SSSR Ser. Mat., 51(3):666-675, 1987.

