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1. Introduction

In [2], Aronsson introduced a nonlinear elliptic differential operator ∆∞
defined by

∆∞u(x) :=
〈
D2u(x)Du(x), Du(x)

〉
=

N∑
i,j=1

∂u

∂xi
(x)

∂u

∂xj
(x)

∂2u

∂xi∂xj
(x).

This operator, nowadays known as the infinity-Laplacian, was proposed
to describe the Euler equation of an L∞-variational problem related to
minimal Lipschitz extensions of functions defined on the boundary ∂Ω of
a domain Ω in RN (see also [4]). More precisely, a function φ ∈W 1,∞(Ω)∩
C(Ω) is called an absolutely minimizing Lipschitz extension (AMLE for
short) of a function ϕ : ∂Ω → R into Ω, if φ = ϕ on ∂Ω and

|Dφ|L∞(U) ≤ |Dw|L∞(U) (1)

for every open subset U of Ω and w ∈W 1,∞(U)∩C(U) satisfying w = φ
on ∂U . Here (1) is regarded as a variational problem in L∞. Aronsson [2]
proposed the following Dirichlet problem:

∆∞φ = 0 in Ω, (2)
φ = ϕ on ∂Ω (3)

as an Euler equation for the variational problem. He also proved the
equivalence between smooth AMLEs of ϕ into Ω and classical solutions
of (2), (3).

In [3], it is proved that if φ is a non-constant classical solution of (2),
(3), then |Dφ| > 0 in Ω for the case of N = 2. Furthermore, this fact
yields a simple counter-example to the existence of classical solutions of
(2) (see p.55 of [11]). Jensen [11] introduced a weak formulation of the
Dirichlet problem (2), (3) by using the notion of viscosity solutions and
also proved:

Theorem 1 (Jensen [11]). Let Ω be a bounded domain in RN with
boundary ∂Ω and let ϕ ∈ C(∂Ω). Then there exists a unique viscosity
solution φ ∈ C(Ω) of (2), (3). Moreover, if ϕ is Lipschitz continuous on
∂Ω, then φ ∈W 1,∞(Ω).

The equivalence between AMLEs of ϕ into Ω and viscosity solutions of
(2), (3) is also proved in [11], provided that ϕ is Lipschitz continuous on
∂Ω. Moreover, many authors have studied the elliptic problem (2) from
various points of view (see, e.g., [4] and the references therein).

On the other hand, only a few authors have dealt with parabolic
equations involving the infinity-Laplacian (see [1], [13]). Akagi-Suzuki [1]
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proved the Lipschitz regularity of viscosity solutions u = u(x, t) as well
as the well-posedness for the following Cauchy-Dirichlet problem:

ut = ∆∞u in Q := Ω × (0,∞), (4)
u = ϕ on ∂Ω × (0,∞), (5)
u = u0 on Ω × {0}, (6)

where ut = ∂u/∂t. If Ω = RN , we ignore (5). Throughout this paper, we
assume that u0 ∈ C(Ω), ϕ ∈ C(∂Ω) and u0 = ϕ on ∂Ω to let a solution
belong to C(Ω × [0,∞)).

The aim of this paper is to reveal the asymptotic behavior of viscosity
solutions for (4)–(6) as t → ∞ in the following three cases: (i) Ω = RN

and u0 has a compact support; (ii) Ω is a bounded domain and ϕ ≡ 0
(homogeneous Dirichlet case); (iii) Ω is a bounded domain and ϕ 6≡ 0
(inhomogeneous Dirichlet case); notice that we have assumed ϕ to be
independent of the time variable.

Our method of proof relies on barrier function arguments. For parabolic
equations involving elliptic operators in divergence form such as p-Laplace
operator ∆pu := div(|Du|p−2Du), the energy method is an effective tool
in analyzing the asymptotic behavior of solutions. However, this method
can not be directly applied to our problem, since the infinity-Laplacian
is not in divergence form. Hence we employ a barrier function argument
instead of the usual energy method.

In case (i), where Ω = RN and u0 ∈ C0(RN ), we propose a self-similar
viscosity solution B(x, t) of (4) in RN × (0,∞) and derive an optimal
decay rate (= O(t−1/6)) in supremum norm for every bounded viscosity
solution u(x, t) as t→ ∞ by using B(x, t) and the comparison principle.

In case (ii), where Ω is bounded and ϕ ≡ 0, we show the explicit rep-
resentation of viscosity solutions for (4) in the separable form: V (x, t) =
ρ(t)ψ(|x|), where ψ is a solution of

d

dξ
(ψ′(ξ)3) +

3
2
ψ(ξ) = 0, ξ ∈ R.

Using V (x, t) instead of B(x, t), we derive an optimal decay rate (=
O(t−1/2)) for every viscosity solution u(x, t) as t → ∞ in case Ω is
bounded. Moreover, we verify that the same conclusion remains valid
even if Ω is unbounded but bounded in at least one direction.

We emphasize that these optimal decay rates are independent of the
dimension N . This fact stems from the severe degeneracy of the infinity-
Laplacian. More precisely, diffusion occurs only in the direction of Du,
because the rank of the diffusion matrix Du ⊗ Du is equal to 1 even if
Du 6= 0, and its eigenvectors of the largest eigenvalue |Du|2 are parallel
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to Du. Thus the diffusion described by (4) seems one-dimensional (see
also Remark 2). Recall that, in contrast, the decay rate for the Gauss
kernel in RN is O(t−N/2), and for the p-Laplace parabolic equation ut =
div(|Du|p−2Du), the so-called Barenblatt solution in RN decays to zero
in supremum norm at the explicit rate O(t−N/(Np−2N+p)) as t→ ∞.

The case (iii), whereΩ is bounded and ϕ 6≡ 0, is naturally motivated by
the connection between the AMLE of ϕ and the solution of the Dirichlet
problem (2), (3), and moreover, by the fact that the main interest of
finding AMLEs is in this case, because the AMLE of ϕ ≡ 0 is trivial. We
prove that the unique solution u(x, t) of the Cauchy-Dirichlet problem
(4)–(6) converges to the solution φ of (2), (3), i.e., the AMLE of the
boundary value ϕ into Ω, uniformly on Ω as t → ∞ with estimates
for the convergence rate. This result provides a continuous deformation
(φt)t∈[0,1] between an arbitrary Lipschitz continuous function u0 on Ω
and the AMLE of ϕ = u0|∂Ω such that t 7→ |Dφt|L∞(Ω) is non-increasing
(see also [1]) and the error can be estimated. Furthermore, evolution
equations involving the infinity-Laplacian have appeared in numerical
schemes designed for computing AMLEs (see [5]). The estimates for the
rate of convergence yield an estimate for the number of steps needed in
the scheme.

We first prove that a viscosity solution u(·, t) of (4)–(6) exponentially
converges to a solution φ of the stationary problem (2), (3) as t → ∞,
provided that infx∈Ω |Dφ(x)| > 0 in the viscosity sense. We also establish
a lower estimate for the convergence rate of u(·, t) as t→ ∞ in a special
setting. Finally, the convergence of u(·, t) is verified at the rate of O(t−1/p)
with any p > 4 without imposing the positivity of the infimum of |Dφ|.

Here we note that the barrier functions employed in the cases (i), (ii)
are no longer useful in the case (iii), because ϕ 6≡ 0. As for linear or semi-
linear problems, one can often follow the usual strategy of substituting
u(x, t) = φ(x) + v(x, t) into equations and investigating the asymptotic
behavior of v(x, t), which satisfies the homogeneous Dirichlet boundary
condition, as t→ ∞. However, this method does not seem to be effective
for (4) due to the strong nonlinearity of the infinity-Laplacian. In case
infx∈Ω |Dφ(x)| > 0, we overcome these difficulties by proposing super-
and subsolutions of (4) deeply depending on φ and carrying out a barrier
argument with them. Moreover, for a general φ, this strategy is combined
with the approximation of φ by particular super- and subsolutions of (2)
whose gradients do not vanish.

Juutinen [12] also studied the asymptotic behavior of viscosity solu-
tions of the Cauchy-Dirichlet problems for a parabolic equation involving
the singular infinity-Laplacian, i.e., ut = ∆∞u/|Du|2 in Ω × (0,∞), for
the case (ii) mentioned above (i.e., Ω is bounded and ϕ ≡ 0). He proved
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the comparison principle and the existence of viscosity solutions for the
following eigenvalue problem −∆∞v/|Dv|2 = λv in Ω, v = 0 on ∂Ω, and
applied these results to an analysis of the asymptotic behavior.

This paper consists of six sections. In Section 2, the definition of vis-
cosity solutions is given and the invariance of solutions for (4) is dis-
cussed. Moreover, the comparison principle and the existence of viscosity
solutions for (4) are reviewed as well. Section 3 provides explicit represen-
tations of viscosity solutions for (4) in two different forms. Furthermore,
Sections 4, 5 and 6 are devoted to the cases (i), (ii) and (iii) mentioned
above respectively.
Notation. We denote by B(x0; r) the open ball {x ∈ RN ; |x−x0| < r} of
radius r > 0 with center at x0 ∈ RN . We write R+ = (0,∞) and denote
by 〈·, ·〉 the inner product in RN . Moreover, we also use the notation:

Di =
∂

∂xi
, D = (D1, D2, . . . , DN ), D2

ij =
∂2

∂xi∂xj

and D2 denotes the N × N matrix whose (i, j)-th element is D2
ij . We

simply denote by | · |∞ the sup-norm in the corresponding space if no
confusion arises. Furthermore, let U be a subset of RN and let f be a
function from U into R. Then Lipf (U) denotes the infimum of Lipschitz
constants for f on U .

2. Viscosity solutions

The notion of viscosity solutions is often employed to deal with nonlin-
ear PDEs involving elliptic operators not in divergence form such as the
infinity-Laplacian. In this section we review the definition of viscosity so-
lutions for (4)–(6) and their existence and uniqueness. We first recall the
definition of parabolic super- and subjets.

Definition 1. Let Q be an open subset of RN+1. Then the parabolic su-
perjet P2,+u(x0, t0) and subjet P2,−u(x0, t0) of a function u : Q → R at
(x0, t0) ∈ Q are defined as follows:

P2,+u(x0, t0) :=

{
(s, p,X) ∈ R × RN × SN ;u(x, t) ≤ u(x0, t0) + s(t− t0)

+〈p, x− x0〉 +
1
2
〈X(x− x0), x− x0〉

+o(|x− x0|2 + |t− t0|) as (x, t) → (x0, t0)

}
,

P2,−u(x0, t0) := −P2,+(−u)(x0, t0).
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Here SN denotes the set of all symmetric N ×N matrices.

Now viscosity solutions of (4) are defined as follows (see also [1], [8]):

Definition 2. Let Q be an open subset of RN+1. We denote the set of all
upper semicontinuous (respectively, lower semicontinuous) functions from
Q into R by USC(Q) (respectively, LSC(Q)). A function u ∈ USC(Q)
is said to be a viscosity subsolution of (4) in Q if

s− 〈Xp, p〉 ≤ 0 (7)

for (s, p,X) ∈ P2,+u(x0, t0) and (x0, t0) ∈ Q. A function u ∈ LSC(Q) is
said to be a viscosity supersolution of (4) in Q if

s− 〈Xp, p〉 ≥ 0 (8)

for (s, p,X) ∈ P2,−u(x0, t0) and (x0, t0) ∈ Q. Moreover, u ∈ C(Q) is said
to be a viscosity solution of (4) in Q if it is both a viscosity subsolution
and a viscosity supersolution of (4) in Q.

Remark 1. By [14], the parabolic superjet can be written as follows.

P2,+u(x0, t0) =

{
(ϕt(x0, t0), Dϕ(x0, t0), D2ϕ(x0, t0)); ϕ ∈ C2(Q)

and u− ϕ attains its global maximum at (x0, t0)

}
.

Hence one can easily check that u ∈ USC(Q) is a viscosity subsolution
of (4) in Q if and only if

ϕt(x0, t0) −∆∞ϕ(x0, t0) ≤ 0

whenever u − ϕ attains its global maximum, zero, at (x0, t0), for all
(x0, t0) ∈ Q and ϕ ∈ C2(Q). This fact will be employed in §6.

Furthermore, viscosity solutions of the Cauchy-Dirichlet problem (4)–
(6) are defined as follows:

Definition 3. Let Ω be an open subset of RN and T ∈ (0,∞]. Set Q =
Ω×(0, T ). A function u ∈ USC(Q) (respectively, u ∈ LSC(Q)) is said to
be a viscosity subsolution (respectively, supersolution) of (4)–(6) in Q if u
is a viscosity subsolution (respectively, supersolution) of (4) in Q, u ≤ ϕ
(respectively, u ≥ ϕ) on ∂Ω × [0, T ) and u ≤ u0 (respectively, u ≥ u0 )
on Ω × {0}. Furthermore, u ∈ C(Q) is a viscosity solution if it is both a
viscosity subsolution and a viscosity supersolution of (4)–(6) in Q.
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Concerning the comparison and uniqueness of viscosity solutions for
(4)–(6), we have the following theorem.

Theorem 2 (Akagi-Suzuki [1]). Let Ω be a bounded domain in RN

and let u ∈ USC(Q) and v ∈ LSC(Q) be a viscosity subsolution and a
viscosity supersolution in Q = Ω × R+ of (4) respectively. If u ≤ v on
∂pQ, then u ≤ v in Q. Here ∂pQ denotes the parabolic boundary of Q,
that is,

∂pQ := ∂Ω × [0,∞) ∪Ω × {0}.
In particular, if u1, u2 ∈ C(Q) are viscosity solutions of (4), then

sup
(x,t)∈Q

|u1(x, t) − u2(x, t)| = sup
(x,t)∈∂pQ

|u1(x, t) − u2(x, t)|, (9)

which also guarantees the uniqueness of solutions for (4)–(6).

For the existence of viscosity solutions, we recall the following

Theorem 3 (Akagi-Suzuki [1]). Let Ω be a bounded domain in RN .
Assume that for all x0 ∈ ∂Ω, there exists y0 ∈ RN such that |x0−y0| = R
and {x ∈ RN ; |x − y0| < R} ∩ Ω = ∅ for some positive constant R
independent of x0. Then for any u0 ∈ C(Ω) and ϕ ∈ C(∂Ω) satisfying
u0 = ϕ on ∂Ω, the problem (4)–(6) admits a viscosity solution u ∈ C(Q).

Equation (4) has the invariance under the following change of vari-
ables:

v(x, t) = µu(λU(x+ x∗), λ4µ2(t+ t∗)) (10)

with λ, µ > 0, x∗ ∈ RN , t∗ ∈ R and U an orthogonal matrix. That is, if
u is a solution of (4), so is v. This property remains valid for viscosity
solutions. Indeed, we have the next proposition.

Proposition 1. Let Ω be a domain in RN , T ∈ (0,∞] and Q = Ω ×
(0, T ). For each λ, µ > 0, (x∗, t∗) ∈ RN × R and an N × N orthogonal
matrix U , we put

Qλ,µ
x∗,t∗,U := {(x, t) ∈ RN × R; (λU(x+ x∗), λ4µ2(t+ t∗)) ∈ Q}.

If u is a viscosity subsolution (respectively, supersolution) of (4) in Q,
then v(x, t) defined by (10) becomes a viscosity subsolution (respectively,
supersolution) of (4) in Qλ,µ

x∗,t∗,U .

Proof. By the definitions of super- and subjets, we have, for (x0, t0) ∈
Qλ,µ

x∗,t∗,U ,

P2,±v(x0, t0) = {(λ4µ3s, λµU tp, λ2µU tXU);
(s, p,X) ∈ P2,±u(λU(x0 + x∗), λ4µ2(t0 + t∗))},
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where U t denotes the transpose of U . In the above relation, we put

τ = λ4µ3s, q = λµU tp, Y = λ2µU tXU.

Let u be a viscosity subsolution. Since U is an orthogonal matrix, we get

τ − 〈Y q, q〉 = λ4µ3(s− 〈Xp, p〉) ≤ 0.

Thus v is a viscosity subsolution of (4) in Qλ,µ
x∗,t∗,U . This method of proof

is valid for viscosity supersolutions as well.

3. Exact solutions

In this section we provide explicit viscosity solutions of separable type
and self-similar type for (4) in RN × R+. They will play important roles
in Sections 4 and 5.

Remark 2. In case of radially symmetric solutions u(x, t) = U(|x|, t) for
some U = U(r, t) : R+ × R+ → R, we can derive formally from (4)
that Ut = UrrU

2
r , which is the same form as in (4) with N = 1, i.e.,

ut = ∆∞u = uxxu
2
x. This fact stems from the strong degeneracy of the

infinity-Laplacian and will be used in the construction of exact solutions.

3.1. Separable type

This subsection is devoted to the construction of radially symmetric ex-
act solutions to (4) in RN × R+ by using the technique of separation of
variables. We first deal with the case of N = 1, i.e.,

ut = ∆∞u = (uξ)2uξξ in R × R+, (11)

where uξ and uξξ denote ∂u/∂ξ and ∂2u/∂ξ2 respectively. We seek a
solution in the form of the separation of variables, i.e., u(ξ, t) = ρ(t)ψ(ξ)
with some functions ρ and ψ. Then (11) decomposes into the following
two ordinary differential equations:

ρ̇(t) = −µρ(t)3, t > 0 (12)

and

ψ′(ξ)2ψ′′(ξ) = −µψ(ξ), ξ ∈ R (13)

with an arbitrary constant µ ≥ 0. If µ = 0, we obtain

ρ(t) = C1 and ψ(ξ) = C2ξ + C3
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with constants C1, C2, C3 ∈ R, so the solution u(ξ, t) = ρ(t)ψ(ξ) corre-
sponds to a stationary solution of (11). If µ > 0, positive solutions of (12)
are given as follows:

ρ(t) = (C + 2µt)−1/2 with C ≥ 0.

For simplicity, we put µ = 1/2. Then ρ(t) = (C + t)−1/2 and (13) is
rewritten as

d

dξ
(ψ′(ξ)3) +

3
2
ψ(ξ) = 0, ξ ∈ R. (14)

By a solution of (14) we mean a function ψ(ξ) for which ψ(ξ), ψ′(ξ)3 ∈
C1(R) and (14) holds.

To give an explicit form of solutions for (14), we define the function
ξ : [−π/2, π/2] → R by

ξ(y) =
∫ y

0

√
cos t dt. (15)

Since ξ is strictly increasing on [−π/2, π/2], we can define the inverse
function y := ξ−1 : [−T, T ] → [−π/2, π/2] of ξ, where

T :=
∫ π/2

0

√
cos t dt.

Moreover, the function Φ : R → R defined below will become a solution
of (14) in R.

Definition 4. Define the function Φ1 : [−T, T ] → R by

Φ1(ξ) = sin y(ξ) for ξ ∈ [−T, T ],

and the function Φ2 : [−T, 3T ] → R by

Φ2(ξ) =

{
Φ1(ξ) if ξ ∈ [−T, T ],

Φ1(2T − ξ) if ξ ∈ [T, 3T ],

and the function Φ : R → R by

Φ(ξ) = Φ2(ξ − 4kT ) if ξ ∈ [−T + 4kT, 3T + 4kT ]

for each k ∈ Z.
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Remark 3. The function ξ can be written as the incomplete elliptic in-
tegral E(

√
2, ·) of the second kind with modulus

√
2 in Jacobi’s form.

Indeed, substituting t = 2s into (15), we find

ξ(y) = 2
∫ y/2

0

√
cos 2s ds = 2

∫ y/2

0

√
1 − 2 sin2 s ds = 2E(

√
2, y/2).

The constant T is the complete elliptic integral of the second kind. More-
over, Φ1 satisfies

2E(
√

2, (1/2) sin−1 Φ1(ξ)) = ξ for all ξ ∈ [−T, T ].

Then we see the following properties of Φ.

Lemma 1. It follows that

(i) Φ is 4T -periodic, i.e., Φ(ξ+4T ) = Φ(ξ), and the range of Φ is [−1, 1].
(ii) Φ ∈ C∞(R \

∪
k∈Z{(2k − 1)T}).

(iii) Φ ∈ C1(R) and Φ′((2k − 1)T ) = 0 for all k ∈ Z.
(iv) Φ′(·)3 ∈ C1(R) and Φ is a solution of (14).

Proof. First, the assertion (i) follows immediately from the definition of
Φ. To prove (ii), it is enough to show Φ ∈ C∞(−T, T ) because of the
definition of Φ. Since ξ(y) ∈ C∞(−π/2, π/2) and dξ/dy =

√
cos y > 0

for y ∈ (−π/2, π/2), the inverse function theorem guarantees that y(ξ)
belongs to C∞(−T, T ). Then Φ(ξ) = sin y(ξ) ∈ C∞(−T, T ).

Now, we prove (iii). Note that

Φ′
1(ξ) = cos y(ξ)

dy

dξ
=

√
cos y(ξ) > 0 for ξ ∈ (−T, T ), (16)

which also implies Φ′(ξ) = −Φ′
1(2T − ξ) = −

√
cos y(2T − ξ) < 0 for

ξ ∈ (T, 3T ). Then Φ′(ξ) converges to zero as ξ → T , and therefore Φ
belongs to the C1-class in a neighborhood of ξ = T and Φ′(T ) = 0. This
method is valid at ξ = −T also. From the periodicity of Φ, it follows that
Φ ∈ C1(R) and Φ′((2k − 1)T ) = 0 for k ∈ Z.

Finally, we give a proof of (iv). Since

Φ′′(ξ) = −1
2

tan y(ξ) for ξ ∈ (−T, T ), (17)

it follows that
d

dξ
(Φ′(ξ)3) = −3

2
sin y(ξ) = −3

2
Φ(ξ) for ξ ∈ (−T, T ). (18)

This equation is valid for all ξ ∈ R \
∪

k∈Z{(2k − 1)T}. Since the right-
hand side of (18), i.e., (−3/2)Φ(ξ), is continuous on R, Φ′(ξ)3 belongs to
C1(R). Therefore (18) holds for all ξ ∈ R and Φ becomes a solution of
(14).
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Remark 4. (i) The function Φ is not of class C2 at ξ = T . Indeed, it follows
from (17) that Φ′′(ξ) → −∞ as ξ → T − 0.

(ii) We can prove that V (ξ, t) := (C + t)−1/2Φ(ξ) becomes a viscosity
solution of (11) in R × (−C,∞) as in the proof of Proposition 2, the
next proposition. However, this fact is not obvious, because Φ is not
of class C2 at ξ = (2k − 1)T with k ∈ N.

We next proceed to construct exact solutions of (4) in RN × R+.

Proposition 2. Let Φ be the function given in Definition 4. Then for
every α > 0 and β ≥ 0, the function

V (x, t;α, β) := α2(t+ β)−1/2Φ(α−1|x| + T ) (19)

becomes a viscosity solution of (4) in RN × R+.

Proof. Set Q = RN × R+. By (ii) and (iv) of Lemma 1, V (x, t;α, β) is a
classical solution of (4) in Q \Q0, where

Q0 := {(x, t) ∈ Q; |x| = 2α(k − 1)T for some k ∈ N}.

To prove this proposition, it suffices to show that V (x, t;α, β) satisfies (7)
and (8) at (x0, t0) ∈ Q0.

Here note that V (x, t;α, β) ∈ C1(Q) (see (iii) of Lemma 1) and

DV (x, t;α, β) =

{
α(t+ β)−1/2Φ′(α−1|x| + T )

x

|x|
if x 6= 0,

0 if x = 0,

Vt(x, t;α, β) = −α
2

2
(t+ β)−3/2Φ(α−1|x| + T ) for (x, t) ∈ Q.

Let (x0, t0) ∈ Q0 be fixed. Then we have |x0| = 2α(k − 1)T for some
k ∈ N. We distinguish two cases: k is odd or even.

Let k be odd, that is, k = 2m − 1 with some m ∈ N. Then we claim
that P2,−V (x0, t0;α, β) = ∅. Suppose on the contrary that there exists
(s0, p0, X0) ∈ P2,−V (x0, t0;α, β). Then

V (x, t;α, β) − V (x0, t0;α, β)

≥ s0(t− t0) + 〈p0, x− x0〉 +
1
2
〈X0(x− x0), x− x0〉

+o(|x− x0|2 + |t− t0|) (20)

as (x, t) → (x0, t0). Since V ∈ C1(Q), we have p0 = DV (x0, t0;α, β) = 0,
Φ(α−1|x0| + T ) = Φ1(T ) = 1. Substituting these equalities into (20) and
putting t = t0, we have

α2(t0 + β)−1/2(Φ(α−1|x| + T ) − 1)

≥ 1
2
〈X0(x− x0), x− x0〉 + o(|x− x0|2) (21)
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as x→ x0. In particular, put x = x0 + αζe, where ζ > 0 and

e :=


x0

|x0|
if x0 6= 0,

(an arbitrary unit vector in RN ) if x0 = 0.

Then α−1|x|+T = (2k−1)T + ζ = (4m−3)T + ζ. Since Φ is 4T -periodic
and symmetric about t = T , we have

Φ(α−1|x| + T ) = Φ((4m− 3)T + ζ) = Φ(T − ζ).

Substituting this relation into (21) and dividing both sides by ζ2 ,we get

α2(t0 + β)−1/2Φ(T − ζ) − 1
ζ2

≥ α2

2
〈Xe, e〉 + o(1) (22)

as ζ → +0. Using L’Hospital’s rule twice with (17), we obtain

lim
ζ→+0

Φ(T − ζ) − 1
ζ2

= lim
ζ→+0

Φ′′(T − ζ)
2

= −∞,

which contradicts (22). Thus we deduce that P2,−V (x0, t0;α, β) = ∅.
Now, we show (7). Let (s, p,X) ∈ P2,+V (x0, t0;α, β). Since V ∈ C1(Q),
we have

s = Vt(x0, t0;α, β) = −α
2

2
(t0 + β)−3/2, p = DV (x0, t0;α, β) = 0.

Therefore we obtain

s− 〈Xp, p〉 = −α
2

2
(t0 + β)−3/2 < 0.

Thus (7) holds.
We consider the case where k is even, that is, k = 2m with somem ∈ N.

Then we prove P2,+V (x0, t0;α, β) = ∅ by contradiction. Assume that
there exists (s0, p0, X0) ∈ P2,+V (x0, t0;α, β). It then follows that p0 = 0,
Φ(α−1|x0| + T ) = Φ1(−T ) = −1. Thus repeating the same argument as
in case k is odd, we have

α2(t0 + β)−1/2Φ((4m− 1)T + ζ) + 1
ζ2

≤ α2

2
〈Xe, e〉 + o(1) (23)

as ζ → +0. Since

Φ((4m− 1)T + ζ) + 1
ζ2

=
Φ(−T + ζ) + 1

ζ2
→ ∞ as ζ → +0,
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we obtain a contradiction to (23). Therefore P2,+V (x0, t0;α, β) = ∅. Fur-
thermore, we get, for every (s, p,X) ∈ P2,−V (x0, t0;α, β),

s− 〈Xp, p〉 =
α2

2
(t0 + β)−3/2 > 0.

Consequently, V (x, t;α, β) becomes a viscosity solution of (4) in Q.

Remark 5. From Proposition 2, we see that Equation (4) has another
invariance besides (10): if u(ξ, t) is a solution of (4) with N = 1, then
u(|x|, t) becomes a radially symmetric solution of (4) in (RN \ {0}) ×
(0,∞) for any N ∈ N. In case u ∈ C2,1((0,∞) × (0,∞)), this claim is
easily confirmed. However, in case u is not smooth (indeed, Φ 6∈ C2 in
Proposition 2), it is not evident that u(|x|, t) becomes a viscosity solution.
We verified this claim for V (x, t;α, β) in Proposition 2 (see also §3.3 in [15]
for another case).

3.2. Self-similar type

In this subsection we present an explicit form of a viscosity solution of
self-similar type of (4) in RN ×R+ by employing the so-called Barenblatt
solution B(ξ, t) of the equation:

ut = (uξ)2uξξ =
1
3
∂

∂ξ
(u3

ξ) in R × R+. (24)

The Barenblatt solution (or ZKB solution) is a self-similar solution having
a Dirac delta as initial data and has a compact support expanding at
finite velocity. This type of solution was first supplied by Zel’dovich and
Kompaneets and investigated in detail by Barenblatt in the study of the
porous medium equation, ut = ∆(|u|m−2u) with m > 2, and it has been
provided for other degenerate parabolic equations, in particular, (24).
More precisely, B(ξ, t) can be written as follows (see, e.g., [17, p. 191]):

B(ξ, t) =
1
4
t−1/6(1 − |ξ|4/3t−2/9)3/2

+ for ξ ∈ R and t ∈ R+,

where (x)+ = max{x, 0}. We observe that B ∈ C1(R × R+) ∩ C∞(Λ),
where Λ := {(ξ, t) ∈ R×R+; ξ 6= 0 and 1−|ξ|4/3t−2/9 6= 0}. Furthermore,
we have the following

Proposition 3. Define B(x, t) := B(|x|, t). Then B is a bounded viscosity
solution of (4) in Q = RN × R+.
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Proof. We put
η(ξ, t) := (1 − ξ4/3t−2/9)+,

Q0 := {(x, t) ∈ Q; x = 0 or |x| = t1/6}.
Then we have, for ξ, t ∈ R+,

Bt(ξ, t) = − 1
24
t−7/6η3/2 +

1
12
t−25/18ξ4/3η1/2,

Bξ(ξ, t) = −1
2
t−7/18ξ1/3η1/2,

Bξξ(ξ, t) = −1
6
t−7/18ξ−2/3η1/2 +

1
3
t−11/18ξ2/3η−1/2 (η 6= 0).

Since η = 0 for ξ = t1/6, we see that B ∈ C1(Q)∩C∞(Q\Q0), DB(x, t) =
0 for (x, t) ∈ Q0 and B becomes a classical solution of (4) in Q \Q0.

Let (x0, t0) ∈ Q0. Then x0 = 0 or η(|x0|, t0) = 0. For (s, p,X) ∈
P2,±B(x0, t0), we have p = DB(x0, t0) = 0 and

s = Bt(x0, t0) =

{
−t−7/6

0 /24 if x0 = 0,

0 if η(|x0|, t0) = 0.
(25)

In both cases x0 = 0 and η(|x0|, t0) = 0, it holds that p = 0 and s ≤ 0.
Therefore for (s, p,X) ∈ P2,+B(x0, t0), we have

s− 〈Xp, p〉 = s ≤ 0,

which shows that B is a viscosity subsolution.
We next deal with P2,−B(x0, t0). For the case where x0 = 0, we

claim that P2,−B(0, t0) = ∅. Suppose on the contrary that there exists
(s, p,X) ∈ P2,−B(0, t0). It then follows that

1
4
t−1/6η(|x|, t)3/2 − 1

4
t
−1/6
0 = B(x, t) −B(0, t0)

≥ s(t− t0) +
1
2
〈Xx, x〉 + o(|x|2 + |t− t0|)

as (x, t) → (0, t0). Put x = ζe, where e is a unit vector in RN and ζ > 0.
Letting t→ t0, we have

1
4
t
−1/6
0

{(
1 − ζ4/3t

−2/9
0

)3/2
− 1

}
≥ ζ2

2
〈Xe, e〉 + o(ζ2), (26)

as ζ → 0. Dividing both sides by ζ2 and noting that

lim
ζ→+0

(
1 − ζ4/3t

−2/9
0

)3/2
− 1

ζ2
= −∞,
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we derive a contradiction to (26). Thus P2,−B(0, t0) = ∅. For the case
where η(|x0|, t0) = 0, by (25), every (s, p,X) ∈ P2,−B(x0, t0) satisfies that
s = 0 and p = 0, and therefore s − 〈Xp, p〉 = 0. Hence B is a viscosity
supersolution, and consequently, it is a viscosity solution.

Furthermore, by Proposition 1, we have the following corollary, which
will be used in Section 4.

Corollary 1. Let Q = RN × R+. For α > 0, we define

B(x, t;α) :=
1
4
α3(t+ 1)−1/6(1 − α−2|x|4/3(t+ 1)−2/9)3/2

+ .

Then B(x, t;α) is a viscosity solution of (4) in Q.

Proof. For α > 0, we put µ = α9/2. Then it follows that

B(x, t;α) =
1
4
µ2/3(t+ 1)−1/6(1 − µ−4/9|x|4/3(t+ 1)−2/9)3/2

+

= µB(x, µ2(t+ 1)).

Hence, by Propositions 1 and 3, B(x, t;α) becomes a viscosity solution of
(4) in Q.

Remark 6. By virtue of Proposition 1 with µ = λ, if u solves (4) in the
viscosity sense, then we can obtain a one-parameter family {vλ}λ>0 of
viscosity solutions to (4) defined by the scaling

vλ(x, t) := λu(λx, λ6t). (27)

In particular, from the definition of B, we find a self-similarity of B, i.e.,

λB(λx, λ6t) = B(x, t) for λ > 0 and (x, t) ∈ RN × R+.

Furthermore, the LN -norm of B(·, t) in RN is invariant under the scaling
(27).

4. Optimal decay rate of viscosity solutions in RN

In this section we investigate the optimal decay rate of bounded viscosity
solutions for the Cauchy problem (4), (6) where Ω = RN and the initial
data u0 has a compact support. Our result reads:
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Theorem 4. Let Q = RN × R+ and let u0 ∈ C0(RN ). Then the unique
bounded viscosity solution u of (4), (6) satisfies

|u(·, t)|L∞(RN ) ≤ C(t+ 1)−1/6 for t > 0 (28)

with some C > 0 independent of x and t. In addition, if u0 ≥ 0 in RN

and u0 6≡ 0, then there is c > 0 independent of x and t such that

c(t+ 1)−1/6 ≤ |u(·, t)|L∞(RN ) for t > 0. (29)

Therefore (t+1)−1/6 is the optimal decay rate for the supremum norm of
bounded solutions in Ω = RN .

Proof. To prove the theorem, we recall the explicit representation of the
viscosity solutions B(x, t;α) of self-similar type given in Corollary 1. Let
v(x, t) = B(x, t;α) where α > 0 will be determined later. First, since u0

has a compact support (denoted by suppu0), we take R > 0 so large that
suppu0 ⊂ B(0;R). Next, we note that supp v(·, 0) = B(0;α3/2). Then we
choose an α > 0 so large that

suppu0 ⊂ B(0;R) ⊂ supp v(·, 0),

v(x, 0) ≥ (α3/4)(1 − α−2R4/3)3/2 ≥ |u0|∞ for x ∈ B(0;R).

Hence v(x, 0) ≥ u0(x) in RN . From the comparison theorem (see Theorem
2.1 of [9]), it follows that u ≤ v in Q. Moreover, a similar argument also
implies −v ≤ u in Q. Thus we have (28).

We next derive a decay estimate from below. Let u0 ∈ C0(RN ) be such
that u0 ≥ 0 in RN and u0 6≡ 0. Then we can take x0 ∈ RN such that
u0(x0) > 0. Thanks to Proposition 1, we can assume x0 = 0 without any
loss of generality. Hence there exists ε > 0 such that u0(x) ≥ u0(0)/2 > 0
in B(0; ε). We put w(x, t) := B(x, t;β) with β > 0 so small that

suppw(·, 0) ⊂ B(0; ε) ⊂ suppu0,

w(x, 0) ≤ β3/4 ≤ u0(0)/2 ≤ u0(x) in B(0; ε).

Then w(x, 0) ≤ u0(x) in RN , and the comparison principle yields w(x, t) ≤
u(x, t) in Q. We have, in particular,

1
4
β3(t+ 1)−1/6 = w(0, t) ≤ u(0, t) ≤ |u(·, t)|L∞(RN ).

This completes our proof.

We can also obtain the optimal decay rate for the Lp-norm of bounded
viscosity solutions as t → ∞ in the next corollary. It is noteworthy that
the Lp-norm of u(·, t) decays at the rate of O(t(N−p)/(6p)) if p > N , and
it goes to +∞ if p < N , u0 ≥ 0 and u0 6≡ 0.
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Corollary 2. Let Q = RN × R+ and let u0 ∈ C0(RN ). Let u be a unique
bounded viscosity solution of the Cauchy problem (4), (6). Then for p ∈
[1,∞), there exists a constant Cp > 0 independent of x and t such that

|u(·, t)|Lp(RN ) ≤ Cp(t+ 1)(N−p)/(6p) for t > 0. (30)

In addition, if u0 ≥ 0 and u0 6≡ 0, then

cp(t+ 1)(N−p)/(6p) ≤ |u(·, t)|Lp(RN ) for t > 0 (31)

with some positive constant cp ≤ Cp independent of x and t.

Proof. From the definition of B(x, t;α), it follows that∫
RN

|B(x, t;α)|p dx =
(
α3

4

)p

(t+ 1)(N−p)/6

∫
RN

(
1 − α−2|ξ|4/3

)3p/2

+
dξ,

where ξ := (t+ 1)−1/6x. Hence we have

|B(·, t;α)|Lp(RN ) = Cp,α(t+ 1)(N−p)/(6p) (32)

with

Cp,α := |B(·, 0;α)|Lp(RN ) =
α3

4

[∫
RN

(
1 − α−2|ξ|4/3

)3p/2

+
dξ

]1/p

> 0.

In the proof of Theorem 4, we have proved that

|u(x, t)| ≤ B(x, t;α) for (x, t) ∈ Q

with some constant α > 0. Hence by (32),

|u(·, t)|Lp(RN ) ≤ Cp,α(t+ 1)(N−p)/(6p) for t > 0.

Moreover, in case u0 ≥ 0, we also obtained

0 ≤ B(x, t;β) ≤ u(x, t) for (x, t) ∈ Q

for some β > 0. Therefore we conclude that

Cp,β(t+ 1)(N−p)/(6p) ≤ |u(·, t)|Lp(RN ) for t > 0,

which proves this corollary.
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5. Optimal decay rate of viscosity solutions for homogeneous
Dirichlet case

In this section, we establish the optimal decay rate of viscosity solutions
in Q of (4)–(6) with the homogeneous Dirichlet boundary condition, i.e.,
ϕ ≡ 0. The main result of this section is stated as follows:

Theorem 5. Let Ω be a bounded domain in RN and let Q := Ω × R+.
Moreover, let u0 ∈ C(Ω) be such that u0 = 0 on ∂Ω. Then the unique
viscosity solution u of (4)–(6) with ϕ ≡ 0 satisfies the following :

|u(·, t)|L∞(Ω) ≤ C(t+ 1)−1/2 for t > 0 (33)

with some positive constant C independent of x and t. In addition, if
u0 ≥ 0 and u0 6≡ 0, then there is c > 0 independent of x and t such that

c(t+ 1)−1/2 ≤ |u(·, t)|L∞(Ω) for t > 0. (34)

Therefore (t+ 1)−1/2 is the optimal decay rate of solutions for a bounded
domain Ω.

Proof. Choose R > 0 so large that Ω ⊂ B(0;R) and put

v(x, t) = V (x, t;α1, β1) = α2
1(t+ β1)−1/2Φ(α−1

1 |x| + T ).

We determine α1 and β1 in the following. First, fix α1 in (R/T,∞). Then
Φ(α−1

1 |x|+T ) ≥ Φ(α−1
1 R+T ) > 0 in B(0;R), and v is a viscosity solution

in B(0;R) × R+ because of Proposition 2. Next, choose β1 > 0 so small
that

min
x∈Ω

v(x, 0) ≥ α2
1β

−1/2
1 Φ(α−1

1 R+ T ) ≥ |u0|∞.

Then we deduce from the comparison principle that u ≤ v in Q. Further-
more, we can similarly verify that −v ≤ u in Q as well. Hence there exists
a constant C ≥ 0 depending on R and |u0|∞ but independent of x and t
such that

|u(·, t)|L∞(Ω) ≤ |v(·, t)|L∞(Ω) ≤ C(t+ 1)−1/2.

We next derive (34). Since u0 ≥ 0 and u0 6≡ 0, we take x0 ∈ Ω such
that u0(x0) > 0. By virtue of Proposition 1, we can assume that x0 = 0.
Since u0 ∈ C(Ω), there exists ε > 0 such that u0(x) ≥ u0(0)/2 > 0 in
B(0; ε). Fix α2 ∈ (0, ε/T ) and define w(x, t) by

w(x, t) :=

{
V (x, t;α2, β2) if |x| < α2T,

0 if |x| ≥ α2T,
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where β2 > 0 is chosen to be so large that

max
x∈Ω

w(x, 0) = α2
2β

−1/2
2 ≤ u0(0)/2.

We then observe that w(x, 0) ≤ u0(x) in Ω and w(x, t) = u(x, t) = 0 on
∂Ω×R+. Moreover, by Propositions 1 and 2, w is a viscosity subsolution of
(4) in Q (see Proposition 5.1 of [10]). Hence by the comparison principle,
we conclude that w ≤ u in Q, which yields

α2
2(t+ β2)−1/2 = w(0, t) ≤ u(0, t) ≤ |u(·, t)|∞ for t > 0.

This completes our proof.

Repeating the same argument as in the proof of Corollary 2 with
B(x, t;α) by V (x, t;α, β), we can also verify the following corollary.

Corollary 3. Let Ω be a bounded domain in RN and let Q = Ω × R+.
Moreover, let u0 ∈ C(Ω) be such that u0 = 0 on ∂Ω. Let u be a unique
viscosity solution of the Cauchy-Dirichlet problem (4)–(6). Then for p ∈
[1,∞), there exists a constant Cp > 0 independent of x and t such that

|u(·, t)|Lp(Ω) ≤ Cp(t+ 1)−1/2 for t > 0. (35)

In addition, if u0 ≥ 0 and u0 6≡ 0, then

cp(t+ 1)−1/2 ≤ |u(·, t)|Lp(Ω) for t > 0 (36)

with some positive constant cp ≤ Cp independent of x and t.

Here we note that the optimal decay rate O(t−1/2) for the Lp-norm of
solutions is independent of N and p (cf. Corollary 2) since the variables
x, t of the barrier function V (x, t;α, β) are separable.

Even ifΩ is unbounded but bounded in at least one direction, Theorem
5 is still valid. We show this in the next theorem.

Theorem 6. Let Ω be a (possibly unbounded) domain in RN which lies
between two parallel hyperplanes at a distance d > 0 apart. Moreover, let
u0 ∈ C(Ω) ∩ L∞(Ω) be such that u0 = 0 on ∂Ω. Then the assertions of
Theorem 5 remain valid for all bounded viscosity solutions of (4)–(6).

Proof. Thanks to Proposition 1, by translating and rotating the coordi-
nate system, we can assume

Ω ⊂ D := {(x1, x2, . . . , xN ); |x1| < d/2, x2, . . . , xN ∈ R}.

Define v(x, t) on Q by

v(x, t) := α2(t+ β)−1/2Φ(α−1x1 + T ).
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Then it becomes a viscosity solution of (4) in Q. Indeed, recalling of (ii)-
(iv) of Lemma 1, we deduce that v ∈ C1(Q) ∩ C∞(Q \ Q0) and v is a
classical solution in Q \Q0, where

Q0 := {(x, t) ∈ Q; x1 = 2α(k − 1)T with some k ∈ Z}.

Now, let (x0, t0) ∈ Q0 be fixed. Repeating the same argument as in the
proof of Proposition 2 with obvious modifications, we can verify (7) and
(8) with u replaced by v at (x0, t0). Hence v also becomes a viscosity
solution of (4) in Q.

Set

α = d/T and β = α4c20|u0|−2
∞ = (d/T )4c20|u0|−2

∞

with

c0 := min
|s|≤T/2

Φ(s+ T ) = Φ(T/2) > 0.

We then find that

v(x, 0) ≥ α2β−1/2c0 = |u0|∞ for x ∈ Ω.

Furthermore, it holds that u(x, t) = 0 ≤ v(x, t) on ∂Ω × R+. By the
comparison principle, we can deduce that u ≤ v in Q. Moreover, we can
also derive −v ≤ u in Q. Thus we have

|u(·, t)|∞ ≤ C(t+ 1)−1/2 for t > 0

with some positive constant C independent of x and t. Inequality (34)
can be also proved as in the proof of Theorem 5.

Remark 7. For a general domain Ω in RN , which is possibly unbounded
in all directions, repeating the same argument with the functions v and w
as in the proofs of Theorems 4 and 5, respectively, one can ensure at least
the following fact: for each u0 ∈ C0(Ω), there exists a positive constant C
independent of x and t such that the unique bounded viscosity solution
u of (4)–(6) satisfies

|u(·, t)|∞ ≤ C(t+ 1)−1/6 for t > 0.

Moreover, if u0 ≥ 0 and u0 6≡ 0, then there is a constant c > 0 independent
of x and t such that

c(t+ 1)−1/2 ≤ |u(·, t)|∞. for t > 0.



Asymptotic behavior of solutions for a parabolic equation with ∞-Laplacian 21

6. Asymptotic behavior of viscosity solutions for
inhomogeneous Dirichlet case

In this section, we investigate the asymptotic behavior of viscosity solu-
tions of (4)–(6) with ϕ 6≡ 0. In order to do so, we direct our attention to
the stationary solution φ of (4)–(5), which is the unique viscosity solu-
tion of the Dirichlet problem (2), (3) (see, e.g., [11] for the definition of
viscosity solutions to (2), (3)). Then one can verify that every viscosity
solution u(·, t) of (4)–(6) converges to the unique stationary solution φ as
t → ∞. In §6.1 we impose an additional assumption infx∈Ω |Dφ(x)| > 0
on φ, and derive the convergence of u(·, t) as t → ∞ at an exponential
rate. To prove this, we present barrier functions deeply related to φ. In
§6.2 we also establish a lower estimate for the convergence rate in a spe-
cial setting, where ∂Ω is composed of two disjoint closed subsets of RN

and ϕ takes two different constant values on ∂Ω. Finally in §6.3 we deal
with the general case where φ may not satisfy the assumption used in
§6.1. More precisely, we obtain the convergence at the rate of O(t−1/p)
for any p > 4, by combining the method of proof employed in §6.1 with
some approximations of φ recently developed in [7].

6.1. Exponential convergence

Our result of this subsection is the following:

Theorem 7. Let Ω be a bounded domain in RN and let Q = Ω × R+.
Let ϕ ∈ C(∂Ω) and let φ ∈ C(Ω) be the unique viscosity solution of the
elliptic problem (2), (3) in Ω. Suppose that there exists a constant δ > 0
such that

|Dθ(x)| ≥ δ if φ− θ attains its maximum or minimum at x
for all x ∈ Ω and θ ∈ C2(Ω). (37)

Let u ∈ C(Q) be a viscosity solution in Q of (4)–(6) with an initial data
u0 ∈ C(Ω) satisfying u0 = ϕ on ∂Ω. Then there exist positive constants
λ0 = λ0(|φ|∞, δ) and C0 = C0(|φ|∞, |u0|∞) independent of x and t such
that

sup
x∈Ω

|u(x, t) − φ(x)| ≤ C0e
−λ0t for all t > 0. (38)

Remark 8. (i) If φ ∈ C1(Ω), then (37) can be simply written as

inf
x∈Ω

|Dφ(x)| ≥ δ. (39)

It is also known that if N = 2 then every viscosity solution φ of (2)
belongs to C1(Ω) (see [16]).
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(ii) We can easily give an example of Ω and ϕ which satisfy all the as-
sumptions of Theorem 7. Indeed, set p(x) := 〈a, x〉 + c0 for x ∈ RN ,
where a ∈ RN \{0} and c0 ∈ R. Moreover, let Ω be a bounded domain
in RN with the boundary ∂Ω, and put ϕ := p|∂Ω. Then φ := p|Ω
becomes the unique classical solution of (2), (3), and furthermore,
|Dφ(x)| = |a| > 0 for all x ∈ Ω. Hence by Theorem 7, for any initial
data u0 ∈ C(Ω) satisfying u0 = ϕ on ∂Ω, every viscosity solution
u(·, t) of (4)–(6) converges to φ as t→ ∞ at an exponential rate.

(iii) Aronsson [3] proved that (2), (3) does not admit a non-constant classi-
cal solution φ ∈ C2(Ω) for which Dφ(x0) = 0 at some x0 ∈ Ω if N = 2
(see also [11]). Moreover, Yu [18] also obtained the same conclusion
for C2 infinity-harmonic functions with general N .

Theorem 8 (Yu [18]). Let φ ∈ C2(Ω) be a solution of (2) in Ω. If
Dφ(x0) = 0 for some x0 ∈ Ω, then φ(x) is constant in Ω.

(iv) If φ ∈ C2(Ω) and (39) is not satisfied, that is, infx∈Ω |Dφ(x)| = 0,
then there exist a sequence {xn} in Ω and x0 ∈ Ω such that xn → x0

and Dφ(xn) → 0 in RN . The case where x0 ∈ Ω can be reduced to
the homogeneous Dirichlet case, i.e., ϕ ≡ 0 on ∂Ω, since Theorem 8
implies that φ is constant. The case where x0 ∈ ∂Ω still remains for
§6.3.

(v) In case Ω is a bounded smooth domain in R2, every non-constant
solution φ ∈ C2(Ω) satisfies infx∈Ω |Dφ(x)| > 0 (see [3]). Hence we
can ensure the same conclusion as in Theorem 7 by assuming that
φ ∈ C2(Ω) instead of (37) with δ > 0.

Now, we proceed to prove Theorem 7.

Proof (Proof of Theorem 7). Define the barrier function v+ : Q→ R by

v+(x, t) := φ(x) + Ce−λt {φ(x) + |φ|∞ + 1}α ,

where the constants λ > 0 and α ∈ (0, 1) will be determined later and
C := supx∈Ω |u0(x) − φ(x)|. If x ∈ ∂Ω, then

v+(x, t) ≥ φ(x) = ϕ(x) for all t > 0.

Moreover, we observe that

v+(x, 0) = φ(x) + C{φ(x) + |φ|∞ + 1}α

≥ φ(x) + C ≥ u0(x) for all x ∈ Ω.

Now we shall determine λ > 0 so that v+ becomes a viscosity super-
solution of (4) in Q. To this end, let (x0, t0) ∈ Q and ψ ∈ C2(Q) be such
that

min
(x,t)∈Q

(v+ − ψ)(x, t) = (v+ − ψ)(x0, t0) = 0. (40)
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Then the function f+(s) := s+Ce−λt0{s+ |φ|∞ + 1}α is smooth and its
derivative (f+)′ is positive in (−|φ|∞ − 1,∞). Put

F+(x, s) := ψ(x, t0) − f+(s).

Then F+ is of class C2 in Ω × (−|φ|∞ − 1,∞). We also note that

F+(x0, φ(x0)) = 0,
∂F+

∂s
(x0, φ(x0)) = −(f+)′(φ(x0)) 6= 0.

Hence due to the implicit function theorem, there exist a neighborhood
U of x0 and θ ∈ C2(U) such that θ(x0) = φ(x0) and F+(x, θ(x)) = 0 for
x ∈ U , i.e.,

ψ(x, t0) = f+(θ(x)) = θ(x) + Ce−λt0 {θ(x) + |φ|∞ + 1}α . (41)

Moreover, compare (41) with the fact that v+(x, t0) = f+(φ(x)) by the
definition of v+, and recall the inequality ψ ≤ v+ in Q by (40). Then since
f+ is strictly increasing, we have θ ≤ φ in U . Therefore φ− θ attains its
minimum, zero, at x0. Since φ solves (2) in the viscosity sense, we have
−∆∞θ(x0) ≥ 0. Furthermore, it follows from (37) that |Dθ(x0)| ≥ δ > 0.

For simplicity of computation, we put

A := φ(x0) + |φ|∞ + 1 = θ(x0) + |φ|∞ + 1.

Since ψt(x0, t0) = v+
t (x0, t0) by (40), we see that

ψt(x0, t0) = v+
t (x0, t0) = −λCe−λt0Aα.

Moreover, we differentiate (41) to get

Diψ(x0, t0) = Diθ(x0) + αCe−λt0Aα−1Diθ(x0)

=
[
1 + αCe−λt0Aα−1

]
Diθ(x0),

D2
ijψ(x0, t0) = α(α− 1)Ce−λt0Aα−2Diθ(x0)Djθ(x0)

+
[
1 + αCe−λt0Aα−1

]
D2

ijθ(x0).

Since ∆∞θ(x0) ≤ 0, it follows that

∆∞ψ(x0, t0) = α(α− 1)Ce−λt0Aα−2

×
[
1 + αCe−λt0Aα−1

]2
|Dθ(x0)|4

+
[
1 + αCe−λt0Aα−1

]3
∆∞θ(x0)

≤ α(α− 1)Ce−λt0Aα−2

×
[
1 + αCe−λt0Aα−1

]2
|Dθ(x0)|4

≤ α(α− 1)Ce−λt0Aα−2δ4,
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where we have used the fact that α− 1 < 0. Therefore we obtain

ψt(x0, t0) −∆∞ψ(x0, t0)
≥ −λCe−λt0Aα + α(1 − α)Ce−λt0Aα−2δ4

≥ Ce−λt0Aα
[
−λ+ α(1 − α) (2|φ|∞ + 1)−2 δ4

]
≥ 0,

by choosing λ > 0 so small that

−λ+ α(1 − α) (2|φ|∞ + 1)−2 δ4 ≥ 0.

Hence by Remark 1, we deduce from the arbitrariness of (x0, t0) and ψ
that v+ becomes a viscosity supersolution of (4) in Q. Moreover, the
estimate for the size of λ above is at its best if we take α = 1/2.

Next we apply the same reasoning to functions −u and −φ that are
solutions to (4)–(6) and (2), (3), respectively, with ϕ and u0 replaced by
−ϕ and −u0. This yields that

w(x, t) = −φ(x) + Ce−λt {−φ(x) + | − φ|∞ + 1}α

is a viscosity supersolution of (4) and, in particular, that w ≥ −u in Q.
Here α = 1/2, and λ and C are the constants chosen above. Thus if we
set

v−(x, t) = −w(x, t) = φ(x) − Ce−λt {−φ(x) + |φ|∞ + 1}α ,

then we have u ≥ v− in Q. Putting these things together, by the compar-
ison principle, we obtain

sup
x∈Ω

|u(x, t) − φ(x)| ≤ Ce−λt (2|φ|∞ + 1) for all t > 0,

which proves the claim.

Remark 9. The method of proof for Theorem 7 could be also applied to
other degenerate parabolic equations such as

ut = ∆pu = (p− 2)|Du|p−4∆∞u+ |Du|p−2∆u (42)

with p ≥ 2 for the inhomogeneous Dirichlet case. More precisely, we can
prove that u(·, t) converges to a stationary solution φ as t → ∞ at an
exponential rate under the assumption (37) with δ > 0.



Asymptotic behavior of solutions for a parabolic equation with ∞-Laplacian 25

6.2. Lower estimate for the convergence rate

We can also establish a lower estimate for the distance between u(·, t)
and φ in a special setting.

Proposition 4. Let Ω be a (possibly) unbounded domain in RN with the
boundary ∂Ω, which is composed of two disjoint closed subsets Γ1, Γ2 of
RN (that is, ∂Ω = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅) satisfying ρ(Γ1, Γ2) :=
inf{|x − y|; x ∈ Γ1, y ∈ Γ2} > 0, and let Q = Ω × R+. Let ϕ ∈ C(∂Ω)
be such that

ϕ(x) =

{
a if x ∈ Γ1,

b if x ∈ Γ2
(43)

with two different numbers a, b ∈ R. Let φ be the unique bounded viscosity
solution of (2), (3) in Ω. Then there exist u0 ∈ C(Ω) satisfying u0 = ϕ
on ∂Ω and a bounded viscosity solution u ∈ C(Q) of (4)–(6) with the data
ϕ and u0 such that

sup
x∈Ω

|u(x, t) − φ(x)| ≥ C0e
−λt for t > 0, (44)

where λ and C0 are positive constants independent of x and t.

Remark 10. As simple examples of Ω, ϕ and φ satisfying all the assump-
tions of Proposition 4, we give the following.

(i) φ(x) = |x|, Ω = {x ∈ RN ; 1 < |x| < 2}, Γi = {x ∈ RN ; |x| = i} for
i = 1, 2, a = 1 and b = 2.

(ii) φ(x) = 〈α, x〉 + c0 with α ∈ RN \ {0} and c0 ∈ R, Ω = {x ∈ RN ; 1 <
φ(x) < 2}, Γi = {x ∈ RN ;φ(x) = i} for i = 1, 2, a = 1 and b = 2.

We observe that infx∈Ω |Dφ(x)| = 1 in (i); infx∈Ω |Dφ(x)| = |α| > 0 in
(ii). Thus, in view of Proposition 4, the order of convergence obtained in
Theorem 7 is optimal in the following sense

C1e
−λ1t ≤ sup

x∈Ω
|u(x, t) − φ(x)| ≤ C2e

−λ2t for t > 0

with some positive constants C1, C2, λ1, λ2 such that C1 ≤ C2 and λ2 ≤
λ1. Hence u(·, t) converges to φ uniformly in Ω at an exponential rate
as t → ∞; however, our proofs of Theorem 7 and Proposition 4 do not
derive λ1 = λ2 in general; indeed, the exponents λ1 and λ2 were taken
very large and small respectively.

Remark 11. If Ω is unbounded, then the Dirichlet problem (2), (3) may
have more than one solution. However, if ϕ is bounded, then by the results
in [7] there exists a unique bounded solution φ to (2), (3) that satisfies
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inf ϕ ≤ φ ≤ supϕ. Moreover, if ϕ is given by (43), such a unique bounded
solution φ satisfies

|Dφ|∞ ≤ Lipφ(Ω) = Lipϕ(∂Ω) =
|a− b|
ρ(Γ1, Γ2)

(45)

(see, e.g., Remark 3.4 of [4]).

To prove Proposition 4, we use the following well-known fact.

Lemma 2. Let Ω and φ be as in Proposition 4. Then φ belongs to W 1,∞(Ω).
Moreover, for all x0 ∈ Ω and θ ∈ C1(Ω), it follows that

|Dθ(x0)| ≤ |Dφ|∞, (46)

provided that φ− θ attains its maximum at x0.

Proof. By Remark 11, φ belongs to W 1,∞(Ω). Moreover, let x0 ∈ Ω and
θ ∈ C1(Ω) satisfy the assumption of this lemma. Then we can assume that
φ(x0) = θ(x0) without any loss of generality, by replacing the function
θ(x) by θ(x) + φ(x0) − θ(x0) if necessary. Let n be an arbitrary unit
vector in RN . We calculate the directional derivative of θ(x) at x0 in the
direction n. Choose a positive constant ε so small that B(x0; ε) ⊂ Ω.
Put u(t) = φ(x0 + tn), v(t) = θ(x0 + tn) and L = |Dφ|∞. Then u is
Lipschitz continuous with the constant L, and v is of class C1 in (−ε, ε)
since θ ∈ C1(Ω). Moreover, by assumption, it holds that u(t) ≤ v(t) for
t ∈ (−ε, ε) and u(0) = v(0). Therefore we see

−L ≤ u(t) − u(0)
t

≤ v(t) − v(0)
t

for 0 < t < ε,

v(t) − v(0)
t

≤ u(t) − u(0)
t

≤ L for − ε < t < 0.

Letting t → 0, we have |v′(0)| ≤ L, i.e., |〈Dθ(x0), n〉| ≤ L. Since n is an
arbitrary unit vector, we obtain (46).

Proof (Proof of Proposition 4). Let us assume that a < b. From Remark
11 with (43), it follows that

a ≤ φ(x) ≤ b for x ∈ Ω. (47)

We set

u0(x) := φ(x) + h(φ(x)), h(s) :=
b− a

2π
sin

(
π

b− a
(s− a)

)
.

Then, since h(a) = h(b) = 0, we can easily check u0 = ϕ on ∂Ω. Moreover,
we put

v(x, t) := φ(x) + e−λth(φ(x))
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and claim that v becomes a viscosity subsolution of (4)–(6), provided that
λ is large enough. It follows clearly that v(·, t) = ϕ on ∂Ω for t > 0 and
v(·, 0) = u0 in Ω. To prove that v is a viscosity subsolution of (4) in Q,
let (x0, t0) ∈ Q and ψ ∈ C2(Q) be such that

max
(x,t)∈Q

(v − ψ)(x, t) = (v − ψ)(x0, t0) = 0. (48)

We put f(s) := s+ e−λt0h(s), which has a derivative of the form

f ′(s) = 1 +
e−λt0

2
cos

(
π

b− a
(s− a)

)
≥ 1

2
for s ∈ R. (49)

Therefore f is C∞-diffeomorphic in R. Define θ(x) := f−1(ψ(x, t0)) ∈
C2(Ω), which is rewritten into

ψ(x, t0) = f(θ(x)) = θ(x) + e−λt0h(θ(x)). (50)

The definition of v means

v(x, t0) = f(φ(x)) = φ(x) + e−λt0h(φ(x)).

Hence comparing two relations above and using (48), we find θ(x0) =
φ(x0). Note that v ≤ ψ in Q by (48). As f is increasing, it follows that
φ ≤ θ in Ω. Hence φ− θ attains its maximum, zero, at x0. Since φ solves
(2) in the viscosity sense, we get −∆∞θ(x0) ≤ 0. Moreover, Lemma 2
together with (45) gives |Dθ(x0)| ≤ C with a constant C independent of
θ and x0.

Since ψt(x0, t0) = vt(x0, t0) by (48), we have

ψt(x0, t0) = −λe−λt0h(φ(x0)) = −λe−λt0h(θ(x0)).

Differentiating (50), we obtain

Diψ(x0, t0) =
[
1 + e−λt0h′(θ(x0))

]
Diθ(x0)

and

D2
ijψ(x0, t0) = e−λt0h′′(θ(x0))Diθ(x0)Djθ(x0)

+
[
1 + e−λt0h′(θ(x0))

]
D2

ijθ(x0).

Since ∆∞θ(x0) ≥ 0 and 1 + e−λt0h′(θ(x0)) = f ′(θ(x0)) ≥ 0 by (49), it
follows that

∆∞ψ(x0, t0) = e−λt0h′′(θ(x0))
[
1 + e−λt0h′(θ(x0))

]2
|Dθ(x0)|4

+
[
1 + e−λt0h′(θ(x0))

]3
∆∞θ(x0)

≥ e−λt0h′′(θ(x0))
[
1 + e−λt0h′(θ(x0))

]2
|Dθ(x0)|4.
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Here combining the fact that θ(x0) = φ(x0) with (47), we have

h(θ(x0)) ≥ 0, h′′(θ(x0)) = −
(

π

b− a

)2

h(θ(x0)) ≤ 0,

which implies

∆∞ψ(x0, t0) ≥ −
(

π

b− a

)2

e−λt0h(θ(x0))

×
[
1 + e−λt0h′(θ(x0))

]2
|Dθ(x0)|4

≥ −9
4
C4

(
π

b− a

)2

e−λt0h(θ(x0)).

In the last inequality, we have used the fact that |Dθ(x0)| ≤ C due to
Lemma 2 and

|1 + e−λt0h′(θ(x0))| =
∣∣∣∣1 +

e−λt0

2
cos

(
π

b− a
(s− a)

)∣∣∣∣ ≤ 3
2
.

Therefore

ψt(x0, t0) −∆∞ψ(x0, t0)

≤ e−λt0h(θ(x0))

[
−λ+

9
4
C4

(
π

b− a

)2
]
≤ 0,

provided that λ is so large that −λ + (9/4)C4π2(b − a)−2 ≤ 0. Conse-
quently, v is a viscosity subsolution of (4)–(6) in Q.

Moreover, since u0 is bounded and Lipschitz continuous on Ω and
u0 = ϕ on ∂Ω, there exists a bounded viscosity solution u to (4)–(6) in
Q. Hence the comparison principle (see [9]) yields

u(x, t) ≥ v(x, t) = φ(x) + e−λth(φ(x)) for x ∈ Ω and t > 0.

Since φ ∈ C(Ω), there is x∗ ∈ Ω by (43) such that φ(x∗) = (a + b)/2.
Then we have

u(x∗, t) − φ(x∗) ≥
b− a

2π
e−λt for t > 0,

which implies (44).
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6.3. Convergence to general stationary solutions

We finally discuss the case where the stationary solution φmay not satisfy
(37). An example of such a solution is the famous explicit solution of
Aronsson, φ(x) = x

4/3
1 −x4/3

2 for x = (x1, x2) ∈ Ω := B(0; 1) with N = 2.

Theorem 9. Let Ω be a bounded domain in RN and let Q = Ω × R+.
Let ϕ ∈ C(∂Ω) and let φ ∈ C(Ω) be the unique viscosity solution of the
elliptic problem (2), (3) in Ω. Let u ∈ C(Q) be a viscosity solution in Q
to (4)–(6) with an initial data u0 ∈ C(Ω) satisfying u0 = ϕ on ∂Ω. Then
for any p > 4, there exists a positive constant Cp independent of x and t
such that

sup
x∈Ω

|u(x, t) − φ(x)| ≤ Cp(t+ 1)−1/p for t ≥ 0. (51)

In our proof for Theorem 9, we employ some approximations of the
stationary solution φ recently developed in [7]. Before going to details, we
recall the definition of the local Lipschitz constant of a function f : Ω → R
at x ∈ Ω. We denote

L(f, x) := lim
r→+0

Lipf (B(x; r)).

We can now formulate our lemma on the approximations of φ.

Lemma 3. Let Ω be a bounded domain in RN . Let φ ∈ C(Ω) be a vis-
cosity solution of (2) in Ω. For ε > 0, put Vε := {x ∈ Ω : L(φ, x) < ε}.
Then there exist φ+

ε , φ
−
ε ∈ C(Ω) such that

(i) φ+
ε and φ−ε are a viscosity supersolution and a subsolution of (2) in Ω,

respectively ;
(ii) φ+

ε = φ−ε = φ on Ω \ Vε and φ−ε ≤ φ ≤ φ+
ε on Ω;

(iii) L(φ±ε , x) ≥ ε for x ∈ Ω;
(iv) it follows that

sup
x∈Ω

|φ(x) − φ±ε (x)| ≤ 2 diam(Ω)ε, (52)

where diam(Ω) is the diameter of Ω.

Remark 12. In the case where φ is a viscosity subsolution (respectively,
supersolution) of (2) inΩ, one can still ensure the existence of the function
φ−ε (respectively, φ+

ε ) satisfying (i)–(iv).

Proof. The assertions (i)–(iii) have already been proved in [7], where the
convergence of φ±ε as ε → +0 is also obtained without any explicit esti-
mate such as (52). Thus it suffices to establish (52). To this end, let us
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recall the construction of φ−ε performed in [7]. Since φ is a solution of (2),
the function x 7→ L(φ, x) is upper-semicontinuous, and thus the set Vε is
open in RN . Then one can define a function w−

ε : Vε → R by solving

ε− |Dw−
ε | = 0 in Vε, w−

ε = φ on ∂Vε

in the viscosity sense (the explicit form of w−
ε will be given later). More-

over, w−
ε ≤ φ in Vε and w−

ε is a viscosity subsolution of (2) in Vε. The func-
tion φ−ε ∈ C(Ω) is given by φ−ε (x) = φ(x) if x ∈ Ω \ Vε; φ−ε (x) = w−

ε (x)
if x ∈ Vε. Then φ−ε enjoys the properties (i)–(iii) (see Theorem 2.1 of [7]
for more details), and moreover,

0 ≤ sup
x∈Ω

(
φ(x) − φ−ε (x)

)
= sup

x∈Vε

(
φ(x) − w−

ε (x)
)
. (53)

Let x ∈ Vε be arbitrarily given and let Uε be a connected component of
Vε such that x ∈ Uε. In [7], the function w−

ε is explicitly given as follows:

w−
ε (x) := ε sup

y∈∂Uε

(
φ(y)
ε

− dUε(x, y)
)

= sup
y∈∂Uε

(φ(y) − εdUε(x, y)) ,

where dUε(x, y) stands for the distance between x and y in Uε (see [7]
for its precise definition), and dUε(x, y) coincides with |x− y|, if the line
segment [x, y] := {(1 − θ)x+ θy; θ ∈ [0, 1]} is included in U ε.

Since Uε is open in RN , we can take the largest ball B(x; rε) included
in Uε, where rε is the distance between x and ∂Uε, and choose zε ∈
∂Uε ∩ ∂B(x; rε). By Remark 2.16 of [4], we note that

|φ(x) − φ(y)| ≤
(

sup
x′∈Uε

L(φ, x′)
)
|x− y| ≤ ε|x− y|

for all y ∈ Uε such that [x, y] ⊂ Uε, because φ ∈ C(Ω) and Uε ⊂ Vε.
Choosing y = (1− θ)x+ θzε with θ ∈ (0, 1) above and then letting θ → 1,
we obtain

|φ(x) − φ(zε)| ≤ ε|x− zε|.
Moreover, we have dUε(x, zε) = |x − zε| from the fact that [x, zε] ⊂ U ε.
Therefore

0 ≤ φ(x) − w−
ε (x) ≤ φ(x) − φ(zε) + εdUε(x, zε)

≤ 2ε|x− zε| ≤ 2diam(Ω)ε.

Thus recalling (53), we conclude that

0 ≤ sup
x∈Ω

(
φ(x) − φ−ε (x)

)
≤ 2 diam(Ω)ε.

Furthermore, we can also construct a viscosity supersolution φ+
ε of (2)

in Ω and verify our desired results, in particular, (52), by repeating the
argument above with obvious modifications.
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We also prepare the following lemma, which gives an interpretation of
L(φ, x) in the viscosity sense.

Lemma 4. Let Ω be an open set in RN and let φ be a viscosity subsolution
(respectively, supersolution) of (2) in Ω. Let x0 ∈ Ω and θ ∈ C1(Ω) be
such that φ− θ attains its local maximum (respectively, minimum) at x0.
Then it holds that

L(φ, x0) ≤ |Dθ(x0)|. (54)

Proof. We first treat the case where φ is a subsolution. From the assump-
tions on x0 and θ, we have φ − θ ≤ (φ − θ)(x0) in a neighborhood U of
x0, which gives

φ(x) − φ(x0) ≤ θ(x) − θ(x0) for x ∈ U.

Since −∆∞φ ≤ 0 in the viscosity sense, we have

L(φ, x0) = lim
r→+0

max
{
φ(x) − φ(x0)

r
; x ∈ ∂B(x0; r)

}
(see Lemma 4.6 of [6]). On the other hand, let xr be a maximum point
of θ on ∂B(x0; r). Then, since θ ∈ C1(Ω), it follows that

θ(xr) − θ(x0)
r

→ |Dθ(x0)| as r → +0.

Therefore we conclude that L(φ, x0) ≤ |Dθ(x0)|. As for the case where φ
is a supersolution, we can also derive (54), since −φ becomes a subsolution
in Ω and L(φ, x0) = L(−φ, x0).

We proceed to give a proof of Theorem 9.

Proof (Proof of Theorem 9). For ε > 0, let φ+
ε and φ−ε be the functions

provided by Lemma 3 and define

v+(x, t) := φ+
ε (x) + Ce−λt

{
φ+

ε (x) + |φ|∞ + 2
}1/2

with C := supx∈Ω |u0(x) − φ(x)| + 1 and a constant λ > 0 which will
be determined later. Put C1 := 2 diam(Ω). By (iv) of Lemma 3, we note
that

φ+
ε (x) ≥ − sup

x∈Ω
|φ+

ε (x) − φ(x)| + φ(x) ≥ −C1ε− |φ|∞ ≥ −1 − |φ|∞

for ε ∈ (0, 1/C1). Hence v+(·, t) ≥ φ+
ε = ϕ on ∂Ω. Moreover

v+(x, 0) ≥ φ+
ε (x) + C ≥ u0(x) for x ∈ Ω.
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We next prove that v+ is a viscosity supersolution of (4) in Q. To do
so, let (x0, t0) ∈ Q and ψ ∈ C2(Q) be such that

min
(x,t)∈Q

(v+ − ψ)(x, t) = (v+ − ψ)(x0, t0) = 0. (55)

Then by repeating the same argument as in the proof of Theorem 7, we
can obtain a neighborhood Uε of x0 and a function θε ∈ C2(Uε) such that
θε(x0) = φ+

ε (x0) and

ψ(x, t0) = f+(θε(x)) := θε(x) + Ce−λt0 {θε(x) + |φ|∞ + 2}1/2 . (56)

Moreover, φ+
ε − θε attains its minimum, zero, at x0. Hence we obtain

−∆∞θε(x0) ≥ 0 from the fact that −∆∞φ
+
ε ≥ 0 in the viscosity sense.

For simplicity of computation, we put

Aε := φ+
ε (x0) + |φ|∞ + 2 = θε(x0) + |φ|∞ + 2.

As in the proof of Theorem 7, it follows from (55) that

ψt(x0, t0) = v+
t (x0, t0) = −λCe−λt0A1/2

ε ,

and moreover, by (iii) of Lemma 3 and Lemma 4, we have

∆∞ψ(x0, t0) = −C
4
e−λt0A−3/2

ε

[
1 +

C

2
e−λt0A−1/2

ε

]2

|Dθε(x0)|4

+
[
1 +

C

2
e−λt0A−1/2

ε

]3

∆∞θε(x0)

≤ −C
4
e−λt0A−3/2

ε ε4,

since ∆∞θε(x0) ≤ 0. Thus we obtain

ψt(x0, t0) −∆∞ψ(x0, t0)

≥ −λCe−λt0A1/2
ε +

C

4
e−λt0A−3/2

ε ε4

≥ Ce−λt0A1/2
ε

[
−λ+

1
4

(2|φ|∞ + 3)−2 ε4
]

= 0,

by choosing

λ = λε :=
1
4

(2|φ|∞ + 3)−2 ε4 > 0.

Hence from the arbitrariness of (x0, t0) and ψ, we deduce that v+ becomes
a viscosity supersolution of (4) in Q. Therefore the comparison principle
and (iv) of Lemma 3 yield

u(x, t) ≤ φ+
ε (x) + Ce−λεt (2|φ|∞ + 3)1/2

≤ φ(x) + C1ε+ Ce−λεt (2|φ|∞ + 3)1/2 . (57)
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By applying the same argument to −φ and −u, and noting that
(−φ)+ε = −φ−ε , we obtain

u(x, t) ≥ φ−ε (x) − Ce−λεt (2|φ|∞ + 3)1/2

≥ φ(x) − C1ε− Ce−λεt (2|φ|∞ + 3)1/2 . (58)

Therefore combining (57) with (58), we deduce that

sup
x∈Ω

|u(x, t) − φ(x)| ≤ C1ε+ C2 exp
(
−C3ε

4t
)

(59)

for all t > 0 and ε ∈ (0, 1/C1) with positive constants C2, C3. Now, put
ε(t) := t−1/p with p > 4. Then we can take a constant t∗ > 0 such that
ε(t) < 1/C1 for all t ≥ t∗. Hence it follows from (59) with ε = ε(t) that

sup
x∈Ω

|u(x, t) − φ(x)| ≤ C1t
−1/p + C2 exp

(
−C3t

(p−4)/p
)

for t ≥ t∗.

Since the exponential part decays faster than t−1/p as t → ∞, we finally
obtain (51).
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