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Abstract. The purpose of this note is to establish a natural connection
between the minimizers of two closely related variational problems. We
prove global and local convergence results for the p-harmonic functions,
defined as continuous local minimizers of the Lp norm of the gradient for
1 < p < ∞, as p → 1, and show that the limit function minimizes at least
locally the total variation of the vector-valued measure ∇u in BV (Ω).

1. Introduction

Let Ω ⊂ IRn, n > 1, be a bounded Lipschitz domain and f : ∂Ω → IR
a continuous function. The problem of minimizing the total variation of the
vector-valued measure ∇u on Ω

(1.1) ‖∇u‖(Ω) = sup
{ ∫

Ω

udiv σ dx : σ ∈ C∞0 (Ω; IRn), |σ(x)| ≤ 1 for x ∈ Ω
}

in the set
{u : u ∈ BV (Ω) ∩ C(Ω), u = f on ∂Ω}

has been studied in detail by Sternberg, Williams and Ziemer in [17]. The
purpose of this note is to establish a connection between the minimizers of the
above problem, called functions of least gradient, and the so-called p-harmonic
functions, which are defined as (continuous) local minimizers of the Lp norm of
the gradient in the Sobolev space W 1,p

loc (Ω) for 1 < p < ∞ (see Definition 2.2
below).

Apart from the continuity requirement, these variational problems represent
archetypal minimization problems in their respective spaces BV and W 1,p. The
co-area formula

‖∇v‖(Ω) =
∫ ∞

−∞
P ({v ≥ t}, Ω) dt, v ∈ BV (Ω),

where P ({v ≥ t}, Ω) = ‖∇χ{v≥t}‖(Ω) denotes the perimeter of the superlevel
set {x ∈ Ω : v(x) ≥ t} in Ω, readily connects functions of least gradient to the
theory of parametric minimal surfaces [8]. Indeed, in [1] Bombieri, De Giorgi
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and Giusti have shown that the superlevel sets of a function of lest gradient
are area-minimizing. Conversely, Sternberg et al. [17] prove the existence of a
function of least gradient (under certain geometric conditions on the domain)
by explicitly constructing each of its superlevel sets in such a way that they are
area-minimizing and reflect the boundary condition. Another context in which
functions of least gradient play an important role is the asymptotic behavior of
solutions to the generalized motion by mean curvature, see [18], [11].

The theory of p-harmonic functions can in turn be seen as a natural gener-
alization of the classical theory of harmonic functions, where the usual Dirichlet
integral has been replaced by the functional

Ip(u) =
∫

Ω

|∇u|p dx, 1 < p < ∞,

and the Laplace equation by the nonlinear p-Laplace equation

(1.2) −∆pu := − div(|∇u|p−2∇u) = 0.

Due to the nonlinearity and degeneracy of the equation, p-harmonic functions
are, in general, not smooth and hence (1.2) has to be understood in a weak sense,
see Definition 2.2. Notice that in the case p = 2, we recover the Dirichlet integral
and the Laplace equation −∆u = 0. The p-Laplace equation is the prototype of
a class of quasi-linear equations in the form

−divAp(x,∇u(x)) = 0, Ap(x, ξ) ≈ |ξ|p,
and it is fundamental in the nonlinear potential theory; cf. [10]. The p-harmonic
operator ∆pu also appears in many contexts in physics.

We have two main results in this paper. The first one, Theorem 3.1, shows
that if Ω is a smooth domain whose boundary has positive mean curvature and
f ∈ C(∂Ω), then the sequence of the unique p-harmonic functions up ∈ W 1,p

loc (Ω)∩
C(Ω) that agree with f on ∂Ω converges uniformly, as p → 1, to a function
h ∈ BV (Ω) ∩ C(Ω) that is the unique function of least gradient with boundary
data f . The assumptions on the domain and boundary data guarantee that the
problem of finding a function of least gradient with the given boundary values
is well-posed, but this is not the case if Ω is an arbitrary bounded domain, see
[17]. Therefore such a convergence result cannot hold in wider generality, and
we must turn to local results. In this regard we show that if {up}1<p<2 is a
sequence of p-harmonic functions, bounded in Ls

loc for some s > 1, then, up to
a subsequence, up → u1 in Lq

loc for 1 ≤ q < n/(n − 1) and the limit function
u1 ∈ BVloc minimizes the total variation locally:

‖∇u1‖(K) ≤ ‖∇v‖(K)

whenever v ∈ BVloc(Ω) is such that v = u1 outside a compact subset K ⊂ Ω.
This is Theorem 4.1. It is easy to give examples showing that u1 need not be
continuous, but if it is, then it is of course locally a function of least gradient.
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The above results appear quite natural, especially after noticing that

‖∇u‖(Ω) =
∫

Ω

|∇u| dx

for u ∈ W 1,1(Ω). However, some caution is needed in the proofs, because func-
tions of least gradient differ from p-harmonic functions in many aspects. Most
importantly, the characterization of p-harmonic functions in terms of equation
(1.2) shows that the property of being p-harmonic is completely local. The same
is not true for the functions of least gradient since their superlevel sets must be
area-minimizing, and that is not a local property. From this it also follows that
the functions of least gradient cannot be characterized by a differential equation.
Furthermore, p-harmonic functions enjoy local C1,α regularity and higher inte-
grability, whereas functions of least gradient are, in general, merely continuous
and need not have any Sobolev regularity.

Our results give yet another existence proof for the functions of least gra-
dient, cf. [15], [17], [18]. Moreover, it is clear that all estimates for p-harmonic
functions that are independent of p for p close to 1 remain valid for the func-
tions of least gradient. As an example, we mention the sup-estimate in Remark
4.4. And although the class of functions of least gradient is not characterized
by a differential equation, the approximation results provides an equation that
all continuous functions of least gradient must satisfy in the viscosity sense, see
Remark 3.3. The novelty here is that this necessary condition can be checked
even if the function in question is not in W 1,1.

The asymptotic behavior as p → 1 of the solutions to the non-homogeneous
p-Laplace equation −∆pu = f(x) with zero boundary values has been studied by
Cicalese and Trombetti [2], and in the special case f ≡ 1, which models torsional
creep, by Kawohl [13]. Another related problem is to understand the limit, as
p → 1, of the p-Laplace eigenvalue problem −∆pu = λ|u|p−2u. This has been
considered by Demengel [4] and Kawohl and Fridman [14].

2. preliminaries

In this section, we recall some definitions and results that are needed later,
and also prove a uniform continuity estimate (Lemma 2.3 below) that plays an
important role in the proof of Theorem 3.1.

We begin with the functions of least gradient that were already defined in
the introduction. Regarding existence and uniqueness, we recall the following
result due to Sternberg et al. [17]:

Theorem 2.1. Let Ω ⊂ IRn be a bounded Lipschitz domain such that ∂Ω has
non-negative mean curvature (in a weak sense) and is not locally are-minimizing.
If f ∈ C(∂Ω), then there exists a unique function of least gradient h ∈ BV (Ω)∩
C(Ω) such that h = f on ∂Ω.

Examples of the form h(x, y) = f(x/y) in two dimensions show that, in
general, functions of least gradient have regularity in the interior no better than
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that at the boundary. Fortunately it is also true that better regularity of the
boundary data induces better regularity in the interior. For us it is particularly
important to know that if Ω is a smooth domain having positive mean curvature
and the boundary data f ∈ C1,1(∂Ω), then the function of least gradient h that
agrees with f on ∂Ω is Lipschitz continuous in Ω, see [17], Theorem 5.9.

Next we briefly review some aspects of the theory of p-harmonic functions.

Definition 2.2. A continuous function u ∈ W 1,p
loc (Ω) is p-harmonic in Ω if

(2.1)
∫

Ω

|∇u|p−2∇u · ∇ϕdx = 0

for every ϕ ∈ C∞0 (Ω). Here 1 < p < ∞.

By the regularity theory of elliptic partial differential equations, the conti-
nuity is redundant in the definition. According to a theorem of Ural’tseva, in the
case p > 2, later extended by DiBenedetto and Lewis to all p > 1, u ∈ C1,α

loc (Ω)
for some α = α(p, n) > 0; see e.g. [5] and the references therein. Furthermore,
if a p-harmonic function u belongs to W 1,p(Ω), then (2.1) holds also for every
ϕ ∈ W 1,p

0 (Ω).
The p-Laplace equation is the Euler–Lagrange equation for the variational

integral

(2.2) Ip(u) =
∫

Ω

|∇u(x)|p dx.

More precisely, a continuous function u ∈ W 1,p
loc (Ω) is p-harmonic in Ω if and

only if∫

Ω0

|∇u|p dx ≤
∫

Ω0

|∇v|p dx whenever Ω0 ⊂⊂ Ω and u− v ∈ W 1,p
0 (Ω0).

Given a function g ∈ W 1,p
0 (Ω), it readily follows from the strict convexity

of the functional Ip that there exists a unique p-harmonic function up such that
up − g ∈ W 1,p

0 (Ω). However, the solvability of the boundary value problem

(2.3)
{ −∆pv = 0 in Ω,

v(x) = f(x) for all x ∈ ∂Ω,

where f ∈ C(∂Ω), is a more subtle issue, cf. [10]. In this paper we will use the
fact that the problem (2.3) is well-posed for any 1 < p < ∞ if ∂Ω is Lipschitz.
Moreover, since we are interested in the convergence of p-harmonic functions as
p → 1, we need continuity estimates that are independent of the parameter p at
least for p close to 1. These follow by a quite standard application of the barrier
method:

Lemma 2.3. Suppose that Ω is a bounded smooth domain whose boundary ev-
erywhere has positive mean curvature. Let f ∈ C(∂Ω) and for 1 < p < 2 let
up ∈ W 1,p

loc (Ω) ∩ C(Ω) be the unique p-harmonic function satisfying up = f on
∂Ω. Then the sequence {up}1<p<2 is equicontinuous in Ω.
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Proof. Let ρ : [0,∞[→ [0,∞[ be a smooth, concave and increasing modulus of
continuity for f , i.e.,

|f(x)− f(y)| ≤ ρ(|x− y|) for x, y ∈ ∂Ω;

it is not difficult to see that such a function ρ always exists. We will show that
there exists a constant C > 0, depending only on f and Ω, such that

(2.4) |up(x)− up(y)| ≤ Cρ(|x− y|1/2)

for x, y ∈ Ω.
We notice first that it is enough to prove that (2.4) holds whenever x ∈ Ω,

y ∈ ∂Ω, and |x − y| < δ for some 0 < δ < 1. This can be deduced using the
comparison principle and the translation invariance of p-harmonic functions, cf.
Lemma 5.1 in [17], and by noting that if |x− y| > δ, then

|up(x)− up(y)| ≤ 2 sup∂Ω |f |
ρ(δ1/2)

ρ(|x− y|1/2).

Thus it suffices to construct, for each z0 ∈ ∂Ω, barriers ω+, ω− ∈ C2(Ω) ∩ C(Ω)
such that

(i) ω±(z0) = f(z0),
(ii) ω− ≤ up ≤ ω+ on ∂(Ω ∩B(z0, δ)),
(iii) −∆pω

+ ≥ 0 and −∆pω
− ≤ 0 in Ω ∩B(z0, δ),

(iv) |ω±(x)− f(z0)| ≤ Cρ(|x− z0|1/2) for x ∈ Ω ∩B(z0, δ).

Indeed, (ii), (iii) and the comparison principle imply ω− ≤ up ≤ ω+ in Ω ∩
B(z0, δ), which together with (i) and (iv) shows that

|up(x)− up(z0)| ≤ Cρ(|x− z0|1/2) for x ∈ Ω ∩B(z0, δ).

In the construction of the required barriers, we utilize some well-known properties
of the (signed) distance function d(x), see e.g. [7], [9]. First, since Ω is a smooth
domain, d(x) is smooth in some small neighborhood U of the boundary and

(2.5) −∆d(x) ≥ (n− 1) min
z∈∂Ω

H(z) > 0 for x ∈ U,

where H(z) denotes the mean curvature of ∂Ω at z. Secondly, from the fact
that |∇d(x)| = 1 for x ∈ U , it follows that D2d(x)∇d(x) = 0. From now on, we
assume that δ > 0 is so small that B(z, 2δ) ⊂ U for every z ∈ ∂Ω.

Following [17], we look for the barrier ω+ in the form

ω+(x) = f(z0) + g(v(x)),

where g(t) = Cρ(t1/2),
v(x) = |x− z0|2 + λd(x)

and λ > 0, C > 0 are to be determined. A direct computation gives

∆pω
+ = g′(v)p−1∆pv + (p− 1)g′(v)p−2g′′(v)|∇v|p.



6 PETRI JUUTINEN

Using the fact that D2d(x)∇d(x) = 0, we have

∆pv = |∇v|p−2
(
2n + λ∆d

)
+ (p− 2)|∇v|p−4

(
8|x− z0|2 + 8λ∇d · (x− z0)

+ 2λ2 + 4λD2d(x− z0) · (x− z0)
)
.

Assuming λ ≥ 4δ, which implies λ/2 ≤ |∇v| ≤ 2λ, this leads to the estimate

∆pv ≤ C1λ
p−1∆d + C2λ

p−2 in Ω ∩B(z0, δ),

where both constants C1, C2 > 0 are independent of p for 1 < p < 2. By (2.5)
we therefore obtain −∆pv > 0 in Ω ∩ B(z0, δ) provided that λ > 0 is chosen to
be sufficiently large. Since ρ is concave and increasing, we conclude

−∆pω
+ ≥ −g′(v)p−1∆pv > 0.

Hence (iii) holds for ω+. Since properties (i) and (iv) are clearly valid, it remains
to check (ii). By choosing C > 1 large enough, we have ω+(x) ≥ sup∂Ω |f | ≥
up(x) for x ∈ Ω ∩ ∂B(z0, δ). On the other hand,

up(x) = f(x) ≤ f(z0) + ρ(|x− z0|) ≤ ω+(x) for x ∈ ∂Ω ∩B(z0, δ),

and hence also (ii) holds for ω+. The barrier ω− is constructed in an analogous
manner. ¤

Remark 2.4. The assumption that Ω is a smooth domain is not really needed in
Lemma 2.3, since it is not necessary that the barriers ω+, ω− are twice differen-
tiable in Ω. Indeed, it is enough to have condition (iii) above valid in the viscosity
sense, and this can be done, for example, if Ω is convex and ∂Ω everywhere has
positive mean curvature “in the viscosity sense” : there exists µ > 0 so that,
whenever x0 ∈ ∂Ω and U ⊂ Ω is a smooth domain such that ∂U ∩ ∂Ω = {x0},
we have

HU (x0) ≥ µ > 0;

here HU (x0) is the mean curvature of ∂U at x0. Since this extension of Lemma
2.3 is not needed in what follows, we omit the details.

3. global results

Our main result in this section is the following theorem:

Theorem 3.1. Suppose that Ω ⊂ IRn is a bounded smooth domain whose bound-
ary has positive mean curvature and f ∈ C(∂Ω), and let h ∈ BV (Ω) ∩ C(Ω)
be the unique function of least gradient such that h = f on ∂Ω. Then if
up ∈ W 1,p

loc (Ω) ∩ C(Ω) is the unique p-harmonic function satisfying up = f on
∂Ω, we have

up → h locally uniformly in Ω.

Proof. Suppose first that f ∈ C1,1(Ω). Then h is Lipschitz continuous, see [17]
Theorem 5.9. In particular, it belongs to the Sobolev space W 1,p(Ω) for every
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1 ≤ p ≤ ∞. Since up minimizes the Lp norm of the gradient, we have by using
Hölder’s inequality that

‖∇up‖(Ω) =
∫

Ω

|∇up| dx ≤ |Ω|1−1/p

(∫

Ω

|∇up|p dx

)1/p

≤ |Ω|1−1/p

(∫

Ω

|∇h|p dx

)1/p

≤ |Ω| ess supx∈Ω|∇h(x)|.

Thus {up}1<p<2 is bounded in BV (Ω), and by the compactness properties of BV
functions we find a subsequence, still denoted by (up), converging to a function
u1 ∈ BV (Ω) in L1. By the lower semicontinuity of the total variation with
respect to L1 convergence, we obtain

‖∇u1‖(Ω) ≤ lim inf
p→1

‖∇up‖(Ω) ≤ lim inf
p→1

|Ω|1−1/p

(∫

Ω

|∇h|p dx

)1/p

=
∫

Ω

|∇h| dx = ‖∇h‖(Ω).
(3.1)

Next we invoke Lemma 2.3 and the comparison principle to conclude that {up}
is equicontinuous and uniformly bounded in Ω. Thus, up to a subsequence,
up → u1 uniformly. In particular, u1 is continuous and u1 = f on ∂Ω. Hence
it follows from (3.1) and the uniqueness of h that u1 = h in Ω. This proves the
theorem in the case f ∈ C1,1(∂Ω).

The general case follows by using a rather standard approximation proce-
dure. If f is merely continuous, we select a sequence (fj) of smooth functions
converging to f uniformly on ∂Ω. For 1 < p < ∞, let up(f) and up(fj) denote
the unique p-harmonic functions with boundary data f and fj , respectively. The
comparison principle for p-harmonic functions and (the proof of) Lemma 2.3 then
imply that the set {up(f), up(fj)

∞
j=1} is uniformly bounded and equicontinuous.

Hence there exists a sequence pk,0 → 1 and u1(f) ∈ BV (Ω) such that

(3.2) sup
Ω
|upk,0(f)− u1(f)| < 1

k
.

Next we select inductively the sequences (pk,j), j = 1, 2, . . . , so that (pk,j) is a
subsequence of (pk,j−1) and

(3.3) sup
Ω
|upk,j

(fj)− hj | < 1
k

,

where hj ∈ BV (Ω) is the function of least gradient with boundary values fj .
Moreover, it follows from the comparison principle for the functions of least
gradient, see [17], that

(3.4) sup
Ω
|h− hj | ≤ sup

∂Ω
|f − fj |,

where h ∈ C(Ω)∩BV (Ω) is the unique function of least gradient with boundary
values f .
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In order to conclude the proof, it suffices to show that u1(f) = h. To
this end, we denote pj = pj,j and compute, using (3.2), (3.3), (3.4) and the
comparison principle for the p-harmonic functions,

sup
Ω
|u1(f)− h| ≤ sup

Ω
|u1(f)− upj (f)| + sup

Ω
|upj (f)− upj (fj)|

+ sup
Ω
|upj

(fj)− hj | + sup
Ω
|hj − h|

≤ 1
j + sup

∂Ω
|f − fj | + 1

j + sup
∂Ω
|f − fj |.

Since fj → f uniformly on ∂Ω, we are done. ¤

Remark 3.2. The approximation of the continuous boundary data f by a se-
quence of smooth functions (fj) is needed in the proof above due to the fact that
mere continuity of the boundary data is clearly not enough to guarantee any
Sobolev regularity for the function of least gradient, not even locally. Indeed,
let C : [0, 1] → [0, 1] be the usual Cantor function associated to the standard
1/3-Cantor set, cf. [16], and define

u(x, y) := C(x) for (x, y) ∈ B := B1/2((1/2, 0)).

It is easy to see that u ∈ BV (B)∩Cα(B) with α = log 2/ log 3, but u /∈ W 1,1
loc (B)

since C is not absolutely continuous. From the fact that superlevel sets of a func-
tion of least gradient are area-minimizing it readily follows that u is a function
of least gradient in B. An analogous example can be constructed for any given
0 < α < 1.

Remark 3.3. It is proved in [12] that a function up ∈ C(Ω) is p-harmonic in Ω
if and only if it is a viscosity solution of

(3.5) −|∇u|2∆u− (p− 2)D2u∇u · ∇u = 0,

or, equivalently, of −|∇u|4−p∆pu = 0. Thus it follows from the stability results
of viscosity solutions, see e.g. [3], and Theorem 3.1 above that if h ∈ C(Ω) is a
function of least gradient, it satisfies

(3.6) −|∇u|2∆u + D2u∇u · ∇u = 0

in the viscosity sense. However, the converse is not true, as shown by the func-
tions in [18], Example 3.6.

Remark 3.4. It easily follows from Theorem 3.1 and the comparison principle
for p-harmonic functions that if Ω is bounded smooth domain whose boundary
has positive mean curvature, fp ∈ C(∂Ω) for 1 < p < 2,

{ −∆pup = 0 in Ω,
up = fp on ∂Ω,

and fp → f uniformly, then up → h uniformly and h is the unique function of
least gradient with boundary data f .
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4. Local results

In this last section, we investigate local convergence properties of p-harmonic
functions as p → 1. Since we do not assume anything about their boundary
behavior nor about the domain Ω, it is clear that the limit functions, if there
are any, need not be continuous. Hence it is reasonable to drop the requirement
that a function of least gradient should be continuous. More precisely, we say
that h ∈ BVloc(Ω) is locally a function of least gradient, if

‖∇h‖(K) ≤ ‖∇v‖(K)

whenever v ∈ BVloc(Ω) is such that v = h outside a compact subset K ⊂ Ω.
This definition has been used for example in [1] and [15].

Theorem 4.1. Let Ω ⊂ IRn be open and suppose that up ∈ W 1,p
loc (Ω) ∩ C(Ω)

are p-harmonic functions so that for some s > 1, the sequence {up}1<p<2 is
bounded in Ls(U) for every open U ⊂⊂ Ω. Then there exists pj → 1 such that
upj

→ u1 ∈ BVloc(Ω) in Lq
loc(Ω) for every 1 ≤ q < n/(n− 1) and u1 is locally a

(possibly discontinuous) function of least gradient.

Remark 4.2. We prove in fact a slightly stronger result: any subsequential
limit of {up}1<p<2 in Lq

loc(Ω), 1 < q < n/(n − 1), is locally a function of least
gradient.

Before proving Theorem 4.1, let us point out a concrete situation where its
assumptions are satisfied and Theorem 3.1 cannot be applied. Let f : ∂Ω → IR
be a bounded function, Ω any bounded domain, and denote by hp the lower
Perron solution (see e.g. [10], Chapter 9) to the Dirichlet problem

(4.1)
{ −∆pv = 0 in Ω,

v = f on ∂Ω.

Then hp ∈ W 1,p
loc (Ω) ∩ C(Ω) is p-harmonic in Ω, but, in general, it is not true

that
lim
x→z

hp(x) = f(z)

for z ∈ ∂Ω. However, since f is bounded, it follows that

sup
x∈Ω

|hp(x)| ≤ sup
z∈∂Ω

|f(z)|.

Thus Theorem 4.1 applies to the sequence {hp}1<p<2, and we conclude that
any subsequential limit when p → 1 is locally a function of least gradient. An
analogous result holds for the sequence of the upper Perron solutions of (4.1).

We begin the proof of Theorem 4.1 by showing that the sequence {up}1<p<s

contains a convergent subsequence.

Lemma 4.3. Let Ω ⊂ IRn be any open set and let {up}1<p<s be a sequence
of p-harmonic functions that is locally bounded in Ls(Ω). Then there exists a
subsequence pj ↘ 1 and u1 ∈ BVloc(Ω) such that upj → u1 in Lq

loc(Ω) for any
1 ≤ q < n/(n− 1).
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Proof. Using upψ
p ∈ W 1,p

0 (Ω), where ψ ∈ C∞0 (Ω), as a test-function in the weak
formulation of the p-Laplace equation, we obtain a Caccioppoli-type inequality

(4.2)
∫

Ω

|∇up|pψp dx ≤ pp

∫

Ω

|up|p|∇ψ|p dx.

See e.g. [10], Chapter 3 for details. Now we have for 1 < p < s and for each ball
B = B(x, r) for which 2B ⊂⊂ Ω that

∫

B

|∇up| dx ≤ |B|(p−1)/p

(∫

B

|∇up|p dx

)1/p

≤ C(n)|B|(p−1)/ppr−1

(∫

2B

|up|p dx

)1/p

≤ C(n)|B|(p−1)/ppr−1

(∫

2B

|up|s dx

)1/s

|B|(s−p)/sp

≤ C(n)p ‖up‖Ls(Ω) rn−1−n/s.

Thus {up}1<p<s is bounded in W 1,1
loc (Ω), and we obtain, by using the Rellich-

Kondrachov compactness theorem, that there exists a subsequence pj → 1 and
u1 ∈ BVloc(Ω) so that upj → u1 in Lq

loc(Ω) for 1 ≤ q < n/(n−1) as claimed. ¤

Remark 4.4. Via the Moser iteration technique it follows from a refined ver-
sion of (4.2) that the sequence {up}1<p<s is actually locally bounded in L∞(Ω).
Indeed, for a ball B such that 2B ⊂⊂ Ω one obtains

ess supB |up| ≤ C|B|−1/s

(∫

2B

|u|s dx

)1/s

.

The novelty is that this holds with a constant C that is independent of p for
1 < p < s.

Theorem 4.1 follows from Lemma 4.3 and

Proposition 4.5. Let Ω ⊂ IRn be a bounded open set and suppose that up ∈
W 1,p(Ω) ∩ C(Ω) are p-harmonic functions so that up → u1 ∈ BV (Ω) in Lq(Ω)
for some 1 < q < n/(n − 1). Then u1 is a (possibly discontinuous) function of
least gradient in Ω.

Proof. Let v ∈ BV (Ω) be such that v = u1 outside a compact subset K ⊂ Ω.
Our aim is to show that

(4.3) ‖∇u1‖(K) ≤ ‖∇v‖(K).

For a given ε > 0, let us choose open sets Ω0, Ui, Vi, i = 1, 2 with Lipschitz
boundary so that

K ⊂ V1 ⊂⊂ U1 ⊂⊂ Ω0 ⊂⊂ U2 ⊂⊂ V2 ⊂⊂ Ω,

and
‖∇u1‖(V2 \ V 1) < ε;
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this is possible because the measure ∇u1 has finite total mass. Let us also choose
a smooth cut-off function η : Ω → IR satisfying

0 ≤ η ≤ 1, η ≡ 1 in Ω0, η ≡ 0 in Ω \ U2.

For δ > 0 we let vδ be the smooth function obtained by mollifying v. Here we
assume that δ is so small that outside V1 we have vδ = (u1)δ. In other words,
δ > 0 is taken to be smaller than dist(K, Ω \ V1).

Now let us use the function

wp = ηp(vδ − up) ∈ W 1,p
0 (U2)

as a test-function for the p-harmonic function up. By standard calculations, this
yields

∫

U2

ηp|∇up|p dx ≤
∫

U2

ηp|∇up|p−1|∇vδ| dx

+ p

∫

U2

ηp−1|vδ − up| |∇up|p−1|∇η| dx.

Using Hölder’s inequality and the properties of the cut-off function η, we thus
obtain

(∫

U2

ηp|∇up|p dx

)1/p

≤
(∫

U2

ηp|∇vδ|p dx

)1/p

+ p

(∫

U2\Ω0

|(u1)δ − up|p |∇η|p dx

)1/p

.

The second integral on the right hand side can be estimated as follows:

∫

U2\Ω0

|(u1)δ − up|p |∇η|p dx ≤
( ∫

U2\Ω0

|(u1)δ − u1|q dx

) p
q
( ∫

U2\Ω0

|∇η|t dx

) p
t

+

( ∫

U2\Ω0

|u1 − up|q dx

) p
q
( ∫

U2\Ω0

|∇η|t dx

) p
t

.

Here t = qp/(q − p).
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Let us now finish the proof. Since up → u1 in Lq, we obtain

‖∇u1‖(Ω0) ≤ lim inf
p→1

‖∇up‖(Ω0) ≤ lim inf
p→1

(∫

U2

ηp|∇up|p dx

)1/p

≤
∫

U2

|∇vδ| dx +

( ∫

U2\Ω0

|(u1)δ − u1|q dx

) 1
q
( ∫

U2\Ω0

|∇η| q
q−1 dx

) q−1
q

=
∫

U1

|∇vδ| dx +
∫

U2\U1

|∇(u1)δ| dx + C

( ∫

U2\Ω0

|(u1)δ − u1|q dx

) 1
q

,

(4.4)

where the constant C > 0 is independent of δ. Next we use the fact that
regularization does not increase the total variation. More precisely, it follows
from [19], Theorem 5.3.1, that for δ small enough

‖∇vδ‖(U1) ≤ ‖∇v‖(Ω0)

and ∫

U2\U1

|∇(u1)δ| dx ≤ ‖∇u1‖(V2 \ V 1) < ε.

Combining these estimates with (4.4) yields

‖∇u1‖(Ω0) ≤ ‖∇v‖(Ω0) + ε + C

(∫

U2\Ω0

|(u1)δ − u1|q dx

) 1
q

.

Since u1 ∈ L
n/(n−1)
loc (Ω) by the Sobolev embedding theorem and 1 < q < n/(n−

1), we have that (u1)δ → u1 in Lq as δ → 0. Hence

‖∇u1‖(Ω0) ≤ ‖∇v‖(Ω0).

Since v = u1 in Ω0 \K, (4.3) now follows. ¤
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