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Abstract. In this paper, we define and investigate the properties of
the principal eigenvalue of the singular infinity Laplace operator

∆∞u = (D2u
Du

|Du| ) ·
Du

|Du| .

This operator arises from the optimal Lipschitz extension problem and
it plays the same fundamental role in the calculus of variations of L∞

functionals as the usual Laplacian does in the calculus of variations of
L2 functionals. Our approach to the eigenvalue problem is based on
the maximum principle and follows the outline of the celebrated work of
Berestycki, Nirenberg and Varadhan [5] in the case of uniformly elliptic
linear operators. As an application, we obtain existence and unique-
ness results for certain related non-homogeneous problems and decay
estimates for the solutions of the evolution problem associated to the
infinity Laplacian.

1. Introduction

Eigenvalue problems are an integral part of the theory of second order
elliptic partial differential equations and appear frequently in various ap-
plications. In the most classical case of a linear self-adjoint operator L in
divergence form

Lu = −div[A(x)Du+B(x)u] +B(x) ·Du+ c(x)u,

the principal eigenvalue of L, i.e., the least number λ ∈ R for which the
Dirichlet problem {

Lu+ λu = 0 in Ω,
u = 0 on ∂Ω,

has a non-trivial solution, can be characterized as the infimum of the asso-
ciated Rayleigh quotient

〈Lu, u〉
〈u, u〉 =

∫
ΩA(x)Du ·Du+ 2uB(x) ·Du+ c(x)u2 dx∫

Ω u
2 dx

in W 1,2
0 (Ω)\{0}. Moreover, the minimizers of this quotient are precisely the

principal eigenfunctions. See e.g. [17]. Here, and throughout the paper, we
assume that Ω ⊂ Rn is a bounded domain.

The method involving the Rayleigh quotient uses heavily the variational
structure and cannot be applied to operators in non-divergence form. Hence
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another approach is needed. In their famous paper [5], Berestycki, Nirenberg
and Varadhan showed that it is possible to define the principal eigenvalue
of a linear operator with the aid of the maximum principle. More precisely,
they proved that for uniformly elliptic linear operators the number

λ1 = sup{λ ∈ R : L+ λI satisfies the maximum principle}
is the least eigenvalue of L. Recall that L+λI satisfies the maximum princi-
ple in Ω if any subsolution of the equation Lu+ λu = 0 that is non-positive
on ∂Ω is non-positive in Ω. Several other properties such as simplicity and
stability of the principal eigenvalue were also studied thoroughly in [5].

The task of developing an eigenvalue theory for nonlinear operators in
non-divergence form has been taken up recently by several authors. The
Pucci extremal operators were treated by Busca, Esteban and Quaas in [10]
(see also [15] and [29]), and their results have been improved and extended
to fully nonlinear, uniformly elliptic operators in [30] by Quaas and Sirakov.
Similar results have been obtained independently by Ishii and Yoshimura
[19]. However, closest to the framework of this paper is the work by Birindelli
and Demengel [8], who allow singular operators and, in particular, do not
assume uniform ellipticity. Instead they require, among other assumptions,
that the operator F (Du,D2u) satisfies

(1.1) a|p|α trace(N) ≤ F (p,M +N)− F (p,M) ≤ A|p|α trace(N)

for some α > −1, 0 < a ≤ A and for all N ≥ 0. A typical example is
F (Du,D2u) = |Du|αMa,A(D2u), where Ma,A is one of Pucci’s operators,
but their theory also applies to the p-Laplacian −∆pu = −div(|Du|p−2Du),
1 < p <∞.

In this paper, we are interested in the eigenvalue problem

(1.2)

{
−∆∞u(x) = λu(x) in Ω,

u(x) = 0 on ∂Ω,

where

(1.3) ∆∞u :=
(
D2u

Du

|Du|
)
· Du|Du|

is known as the infinity Laplace operator. Note that (1.1) does not hold
for the infinity Laplacian, and therefore the problem (1.2) is not covered
by the work of Birindelli and Demengel. In fact, the infinity Laplacian is
non-degenerate only in the direction of the gradient.

The motivation to study (1.2) stems partially from the usefulness of the
infinity Laplace operator in certain applications. The by-now well known
geometric interpretation of the viscosity solutions of the infinity Laplace
equation −∆∞u = 0 as absolutely minimizing Lipschitz extensions, see [1],
[2], has attracted considerable interest for example in image processing, the
main usage being in the reconstruction of damaged digital images, see e.g.
[11]. On the other hand, while the equation −∆∞u = 0 has been studied
extensively after the fundamental paper by Jensen [21], a systematic inves-
tigation of the infinity Poisson equation −∆∞u = f(x) has barely begun.
Most of the known results are due to Peres, Schramm, Sheffield and Wilson
[28] (see also [3]) and are obtained via a game-theoretic interpretation of
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the equation. In order to broaden the study to include right-hand sides of
the form f(x, u), it seems well motivated to consider the eigenvalue problem
associated to (1.3).

We define the principal eigenvalue λ1 as in [5], [8], by setting

(1.4) λ1 = sup{λ : ∃ v > 0 in Ω such that −∆∞v ≥ λv}.
It turns out that this number is positive and it can be explicitly computed
in the case of a ball; this yields reasonably good upper and lower bounds
for λ1 in the general case. We are able to show that λ1 is an eigenvalue and
that it is the least eigenvalue of the infinity Laplacian. Moreover, it admits
a positive eigenfunction and can be characterized as the supremum of the
values λ for which ∆∞ + λI satisfies the maximum principle. These results
are then applied to obtain existence and uniqueness results for the equation

−∆∞u(x) = λu(x) + f(x)

and decay estimates for the solutions of the corresponding evolution equation

ht(x, t) = ∆∞h(x, t)

with zero data on the lateral boundary. A key tool in the proofs is a loga-
rithmic change of dependent variable.

We want to emphasize that all our results hold for an arbitrary bounded
domain Ω ⊂ Rn. Moreover, it will be evident that with minor modifications
in our main arguments one can prove most of the results of this paper for a
class of quasilinear operators of the form

F (x,Du,D2u) = − trace(A(x,Du)D2u).

See Remark 3.3 below for more details.
In the literature, there are several papers, most notably [24], [23], [16],

and [12], whose topic includes both of the terms “eigenvalue” and “infinity
Laplacian”. Let us state very clearly that these deal with a problem that is
different from the one considered in this work. Indeed, the above mentioned
papers are concerned with the asymptotic behavior, as p → ∞, of the p-
Laplace eigenvalue problem

−∆pu = λ|u|p−2u.

The limit equation in case of the principal eigenvalue is found to be

(1.5) min{|Du| − Λu,−∆∞u} = 0,

where

Λ =
1

supΩ dist(x, ∂Ω)
and the solutions of (1.5) minimize

supΩ|Du|
supΩ|u|

over W 1,∞
0 (Ω) \ {0}. We want to point out that although the equation

−∆∞u = 0 is the limit of equations −∆pu = 0 as p → ∞, see e.g. [2],
[21], the infinity Laplace operator is not a limit of the p-Laplacians. For
example, if u(x) = |x|, then ∆pu = n−1

|x| in Rn \ {0} for all 1 < p < ∞, but
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∆∞u = 01. Hence there is no reason to expect that (1.2) and (1.5) would be
equivalent or even strongly related. We will provide explicit examples that
corroborate this. On the other hand, since both (1.2) and (1.5) involve the
infinity Laplacian, it is natural to compare the results we obtain to those
known in the case of (1.5).

2. Definitions

Due to the fact that (1.3) is singular at the points where the gradi-
ent vanishes, we have to use the semicontinuous extensions of the function
(ξ,X) 7→ (X ξ

|ξ|) · ξ
|ξ| when defining the viscosity solutions of (1.2). To this

end, for a symmetric n × n-matrix A, we denote its largest and smallest
eigenvalue by M(A) and m(A), respectively. That is,

M(A) = max
|η|=1

(Aη) · η

and
m(A) = min

|η|=1
(Aη) · η.

Definition 2.1. Let Ω ⊂ Rn be a bounded domain and λ ∈ R. An upper
semicontinuous function u : Ω → R is a viscosity subsolution of (1.2) in Ω if,
whenever x̂ ∈ Ω and ϕ ∈ C2(Ω) are such that 0 = u(x̂)−ϕ(x̂) > u(x)−ϕ(x)
for all x 6= x̂ then

(2.1)

{
−∆∞ϕ(x̂) ≤ λϕ(x̂) if Dϕ(x̂) 6= 0,

−M(D2ϕ(x̂)) ≤ λϕ(x̂) if Dϕ(x̂) = 0.

A lower semicontinuous function v : Ω → R is a viscosity supersolution
of (1.2) in Ω if −v is a viscosity subsolution, that is, whenever x̂ ∈ Ω and
ϕ ∈ C2(Ω) are such that 0 = v(x̂)− ϕ(x̂) < v(x)− ϕ(x) for all x 6= x̂ then

(2.2)

{
−∆∞ϕ(x̂) ≥ λϕ(x̂) if Dϕ(x̂) 6= 0,

−m(D2ϕ(x̂)) ≥ λϕ(x̂) if Dϕ(x̂) = 0.

Finally, a continuous function h : Ω → R is a viscosity solution of (1.2) in Ω
if it is both a viscosity subsolution and a viscosity supersolution.

Now the number λ1 is defined as in [5]:

Definition 2.2. Given a bounded domain Ω ⊂ Rn, let E ⊂ R be the set of
those λ ∈ R for which there exists v ∈ C(Ω) such that v(x) > 0 for all x ∈ Ω
and −∆∞v ≥ λv in Ω in the viscosity sense. Then we define

λ1 = supE.

Since constant functions satisfy the equation −∆∞u = 0, the number λ1

is well-defined and non-negative. Moreover, it follows immediately from the
definition that if Ω1 ⊂ Ω2 then λ1(Ω2) ≤ λ1(Ω1). This allows us to estimate
λ1 for a general domain once we obtain a formula for the principal eigenvalue
of a ball.

1The limiting behaviour, as p → ∞, of the p-Poisson equations −∆pu = f(x) (and
their connection with the mass transfer problems) has been investigated in detail in e.g.
[6], [14], [18], [20] and [25].
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3. Comparison results

We begin by establishing a series of comparison results that are needed
in the verification of the fact that λ1 is the least eigenvalue. Similar results
were obtained by Birindelli and Demengel in [8] by utilizing their earlier
results in [7]. To our taste, the self-contained argument presented below
is simpler than that in [8] and it also makes the proof somewhat shorter.
Moreover, we have the opportunity to correct a minor error that appears in
[8]. 2

Theorem 3.1. Suppose that µ < λ1 and let u ∈ C(Ω) satisfy −∆∞u ≤ µu
in Ω and u ≤ 0 on ∂Ω. Then u ≤ 0 in Ω.

Theorem 3.1 is a special case of the following slightly more general result:

Proposition 3.2. Let µ < λ and suppose that v ∈ C(Ω) is such that v(x) >
0 for all x ∈ Ω and −∆∞v ≥ λv. If u ∈ C(Ω) satisfies −∆∞u ≤ µu in Ω
and u ≤ 0 on ∂Ω, then u ≤ 0 in Ω.

Proof. Our proof is by contradiction, and we suppose that u is not non-
positive. Since v > 0 in Ω and u ≤ 0 on ∂Ω, this means that the function
u(x)
v(x) attains a positive maximum at an interior point x̂ ∈ Ω.

Let us denote w(x) = log u(x) and g(x) = log v(x), where w is defined
only in a neighborhood Ω̂ of x̂ where u is positive. Then it is easy to check
that

(3.1) −∆∞g − |Dg|2 ≥ λ in Ω

and

(3.2) −∆∞w − |Dw|2 ≤ µ in Ω̂

in the viscosity sense. Here we interpret the infinity Laplacian at the points
where the gradient vanishes as in Definition 2.1. Note also that x̂ is a local
maximum point of w(x)− g(x) = log u(x)

v(x) .
Consider next the functions

Ψj(x, y) = w(x)− g(y)− θj(x, y), j ∈ N,
where θj(x, y) = j

4 |x−y|4, and let (xj , yj) ∈ Ω̂× Ω̂ be such that Ψj(xj , yj) =
supΩ̂×Ω̂ Ψj(x, y). Without loss of generality, we may assume that xj → x̂

and yj → x̂ as j → ∞, cf. [13, Lemma 3.1]. Moreover, j|xj − yj |4 → 0 as
j →∞.

Next we apply the maximum principle for semicontinuous functions from
[13]. There exist symmetric n× n matrices Xj , Yj such that

(3.3)
(ηj , Xj) ∈ J

2,+
w(xj),

(ηj , Yj) ∈ J
2,−
g(yj),

where ηj = j|xj − yj |2(xj − yj), and

(3.4)
(
Xj 0
0 −Yj

)
≤ D2θj(xj , yj) +

1
j

[
D2θj(xj , yj)

]2
.

2Birindelli and Demengel have themselves also detected this error and have addressed
the issue in their recent paper [9].
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See [13] for the notation used above. Recalling the definition of θj and
denoting zj = xj − yj , (3.4) can be rewritten as

(
Xj 0
0 −Yj

)
≤ j(|zj |2 + 2|zj |4)

(
I −I
−I I

)

+ 16j|zj |2
(
zj ⊗ zj −zj ⊗ zj
−zj ⊗ zj zj ⊗ zj

)
.

In particular, by evaluating the corresponding quadratic forms at
(
ξ
ξ

)
∈

R2n, we see that Xjξ · ξ ≤ Yjξ · ξ for all ξ ∈ Rn, i.e., Yj − Xj is positive
semidefinite. Hence if xj 6= yj , we have by using the fact that g and w satisfy
(3.1) and (3.2), respectively, that

λ ≤ −
(
Yj

ηj

|ηj |
)
· ηj

|ηj | − |ηj |2 ≤ −
(
Xj

ηj

|ηj |
)
· ηj

|ηj | − |ηj |2 ≤ µ,

contradicting the assumption λ > µ. On the other hand, if xj = yj , then
ηj = zj = 0 and it follows from (3.4) that

(
Xj 0
0 −Yj

)
≤

(
0 0
0 0

)
.

Thus Xj ≤ 0 ≤ Yj , and we obtain from (3.1) and (3.2) that

λ ≤ −m(Yj) ≤ 0 ≤ −M(Xj) ≤ µ;

again a contradiction. ¤

Remark 3.3. It is clear that the argument used in the proof of Proposition
3.2 works in a more general setting than just in the case of the infinity
Laplacian. For example, it applies to quasilinear operators of the form

F (x,Du,D2u) = − trace(A(x,Du)D2u)

under the assumptions that the matrix valued function A = A(x, p) is posi-
tive semidefinite, homogeneous of degree 0 in the second variable and has a
Lipschitz continuous (in x) square root. In fact, most of the results obtained
in this paper can be quite easily generalized to this class of operators.

Corollary 3.4. Suppose that λ < λ1 and let u ∈ C(Ω) satisfy
{
−∆∞u(x) = λu(x) in Ω,

u(x) = 0 on ∂Ω.

Then u ≡ 0 in Ω. In particular, λ is not an eigenvalue.

Combining this with the fact that λ1 is an eigenvalue (which will be proved
in Theorem 5.3 below) we have, analogously to [5] and [8], that

Corollary 3.5. The number λ1 can be characterized as the supremum of
those values λ ∈ R for which the operator ∆∞ + λI satisfies the maximum
principle.

In order to show that λ1 actually is an eigenvalue, we need another com-
parison result that also yields uniqueness for certain related problems.
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Theorem 3.6. Let λ < λ1, and let u and v be a viscosity subsolution and
a supersolution, respectively, of the equation

(3.5) −∆∞φ(x) = λφ(x) + f(x),

where f ∈ C(Ω). Suppose that either

(3.6) f(x) > 0 for all x ∈ Ω

or

(3.7) f(x) ≥ 0 for all x ∈ Ω and λ > 0.

Then, if v ≥ u and v > 0 on ∂Ω, we have v ≥ u in Ω.

Proof. The basic strategy of the proof is the same as that of Proposition 3.2.
We argue by contradiction and suppose that the set {x ∈ Ω : u(x) > v(x)}
is not empty. Since λ < λ1 and −∆∞v ≥ λv in the viscosity sense, it follows
from Theorem 3.1 (applied to −v) that v is nonnegative. For λ ≥ 0 this
together with the Harnack inequality for the supersolutions of −∆∞ϕ = 0
(see Lemma 5.1 below) implies that in fact v > 0 in Ω. In the case λ < 0
the same conclusion can be easily reached by noticing that ϕ ≡ 0 is a test-
function (from below) at the points where v vanishes and then using the
assumption f(x) > 0 for all x ∈ Ω.

Let now x̂ ∈ Ω be such that

(3.8) 1 <
u(x̂)
v(x̂)

= sup
x∈Ω

u(x)
v(x)

.

Without loss of generality, by scaling f if necessary, we may assume that
u > v > 1 in some neighborhood Ω̂ of x̂.

If we denote w(x) = log u(x) and g(x) = log v(x), it is easy to check that
they are a subsolution and a supersolution, respectively, to

(3.9) −∆∞φ(x)− |Dφ(x)|2 − λ− f(x)e−φ(x) = 0

in the subdomain Ω̂. Notice that this equation can be written in the form
F (x,w,Dw,D2w) = 0, where the function

F (x, r, ξ,X) = −
(
X ξ
|ξ|

)
· ξ
|ξ| − |ξ|2 − λ− f(x)e−r

is increasing in the variable r if f is positive in Ω.
By applying the maximum principle for semicontinuous functions to the

functions
Ψj(x, y) = w(x)− g(y)− θj(x, y), j ∈ N,

where θj(x, y) = j
4 |x − y|4, we conclude, as in the proof of Proposition 3.2,

that there exist symmetric n× n matrices Xj , Yj , Xj ≤ Yj such that

(3.10)
(ηj , Xj) ∈ J

2,+
w(xj),

(ηj , Yj) ∈ J
2,−
g(yj),

where Ψj(xj , yj) = supΩ̂×Ω̂ Ψj(x, y), and ηj = j|xj−yj |2(xj−yj). Moreover,
if xj = yj , then Xj ≤ 0 ≤ Yj . We may also assume without loss of generality
that (xj , yj) → (x̂, x̂) as j →∞.
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Now if xj 6= yj , it follows from Xj ≤ Yj and the fact that w and g are a
subsolution and a supersolution to (3.9) that

λ+ f(yj)e−g(yj) ≤ −
(
Yj

ηj

|ηj |
)
· ηj

|ηj | − |ηj |2

≤ −
(
Xj

ηj

|ηj |
)
· ηj

|ηj | − |ηj |2 ≤ λ+ f(xj)e−w(xj).

On the other hand, if xj = yj , then ηj = 0 and we obtain

λ+ f(yj)e−g(yj) ≤ −m(Yj) ≤ 0 ≤ −M(Xj) ≤ λ+ f(xj)e−w(xj).

Thus in any case f(yj)e−g(yj) ≤ f(xj)e−w(xj) for each j, and if f(x̂) > 0, we
obtain by letting j →∞ that g(x̂) ≥ w(x̂), contradicting (3.8).

If f is merely a non-negative function, we perturb g slightly so that it
becomes a strict supersolution. More precisely, for α > 1 and A > 1 let

h(t) =
1
α

log
(
1 +A(eαt − 1)

)
.

Then h′(t) > 1 and h′(t) − h′(t)2 − h′′(t) > 0 for all t ≥ 0. Moreover,
0 < h(t) − t < A−1

α for t ≥ 0, and thus h(t) → t uniformly if A → 1+. See
[24] for details. Now a formal computation yields that the function

G(x) := h(g(x))

satisfies

−∆∞G− |DG|2 =h′(g)(−∆∞g)− h′′(g)|Dg|2 − h′(g)2|Dg|2
≥h′(g) [

λ+ fe−g
]
+ |Dg|2 [

h′(g)− h′(g)2 − h′′(g)
]

≥h′(g) [
λ+ fe−g

]

>λ+ f(x)e−G(x),

where the last inequality follows from the facts λ > 0, h′(t) > 1 and h(t) > t
for all t ≥ 0. Since h is smooth and increasing, it is straightforward to verify
that indeed

(3.11) −∆∞G(x)− |DG(x)|2 > λ+ f(x)e−G(x)

in the viscosity sense. By choosing A > 1 sufficiently small, we see that also
w −G achieves its positive maximum in Ω̂ at an interior point.

Now the rest of the argument runs as in the case f > 0. We apply the
maximum principle for semicontinuous functions to

Ψj(x, y) = w(x)−G(y)− θj(x, y), j ∈ N,
and conclude, as above, that there exist symmetric n× n matrices Xj ≤ Yj

such that

(3.12)
(ηj , Xj) ∈ J

2,+
w(xj),

(ηj , Yj) ∈ J
2,−
G(yj),

and Xj ≤ 0 ≤ Yj if xj = yj ; here, as before, xj , yj are points such that
Ψj(xj , yj) = supΩ̂×Ω̂ Ψj(x, y) and ηj = j|xj − yj |2(xj − yj). Using Xj ≤ Yj ,
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(3.11) and the fact that w is a subsolution of (3.9), this yields

λ+ f(yj)e−G(yj) < −
(
Yj

ηj

|ηj |
)
· ηj

|ηj | − |ηj |2

≤ −
(
Xj

ηj

|ηj |
)
· ηj

|ηj | − |ηj |2 ≤ λ+ f(xj)e−w(xj)

if xj 6= yj , and

λ+ f(yj)e−G(yj) < −m(Yj) ≤ 0 ≤ −M(Xj) ≤ λ+ f(xj)e−w(xj)

if xj = yj . Both alternatives lead to a contradiction upon letting j → ∞
and the proof is complete. ¤
Corollary 3.7. Let λ < λ1 and suppose that f : Ω → R and g : ∂Ω → R
are continuous functions such that g is positive and either

f is positive in Ω

or
f is non-negative in Ω and λ > 0.

Then the Dirichlet problem

(3.13)

{
−∆∞φ(x) = λφ(x) + f(x), in Ω,

φ(x) = g(x) on Ω,

has at most one solution.

Remark 3.8. We do not know if the assumptions of the corollary above are
optimal. An example constructed in [28] shows that in the case λ = 0 there
exists a Lipschitz continuous function f , defined in the closed unit disc B1

of R2, such that the problem{
−∆∞v = f(x) in B1,

v = 0 on ∂B1,

has more than one solution. This function f takes values of both signs. On
the other hand, if f is uniformly continuous and either f ≡ 0 or inf|f | > 0,
then the Dirichlet problem{

−∆∞v(x) = f(x) in Ω,
v(x) = g(x) on ∂Ω,

has a unique viscosity solution for any uniformly continuous boundary data
g and for any bounded domain Ω ⊂ Rn. See [28]. Note that in the case
λ = 0 the positivity of g is not a restriction since a constant can be added
to a solution, and hence Corollary 3.7 in fact slightly improves the above-
mentioned uniqueness result in [28].

In the case λ = λ1 and f ≡ 0, g ≡ 0, the uniqueness for (3.13) fails
because any constant multiple of an eigenfunction is also an eigenfunction.
See Theorem 5.3 below. On the other hand, for λ < 0 the equation (3.5)
is increasing in the φ-variable, and thus the Dirichlet problem (3.13) has
at most one solution for any continuous f and g by the general uniqueness
result [13, Theorem 3.3]. Finally, since the infinity Laplacian is odd, the
uniqueness for (3.13) holds also when λ < λ1 and both f and g are negative.
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We do not know whether the principal eigenvalue λ1 is simple. However,
arguing as in the proof of Theorem 3.6, we can obtain local uniqueness for the
positive principal eigenfunction. The result is analogous to what is known
about the first eigenfunctions of the infinity eigenvalue problem (1.5), see
[24].

Theorem 3.9. If u and v are positive eigenfunctions, associated to the same
eigenvalue λ ≥ λ1 > 0, then

sup
Ω′

u

v
= sup

∂Ω′

u

v

for any Ω′ ⊂⊂ Ω.

4. The principal eigenvalue in a ball

If the domain Ω is a ball, it is natural to expect that the principal eigen-
value is simple and that the associated eigenfunction is radial. Moreover,
there is also hope to find explicit formulas for the eigenvalue and the eigen-
function.

With these goals in mind, let Ω = BR = BR(0) and let us look for positive
radial solutions to (1.2). Setting h(x) = g(|x|), we have Dh(x) = g′(|x|) x

|x|
and

D2h(x) = g′′(|x|) x|x| ⊗
x

|x| + g′(|x|) 1
|x|

(
I − x

|x| ⊗
x

|x|
)

for x 6= 0. Hence
∆∞h(x) = g′′(|x|),

and the equation −∆∞h = λh reduces to −g′′ = λg. This formal calculation
becomes rigorous once we observe that if ϕ is a smooth test-function for g at
r0 ∈ ]0, R[, then ψ(x) := ϕ(|x|) is a smooth test-function for h at all points
x for which |x| = r0. Taking into account the boundary condition g(R) = 0,
it is not hard to see that g must be of the form

g(r) = C1 cos(
√
λr) + C2 sin(

√
λr).

The function
h(x) = C1 cos(

√
λ|x|), λ > 0

is twice differentiable everywhere and satisfies the equation (1.2) in BR (in
the viscosity sense). On the contrary, the function x 7→ C2 sin(

√
λ|x|) is only

a viscosity sub- or supersolution, depending on the sign of the constant C2.
In fact, near x = 0, this function looks like a cone having vertex at the origin,
and the conical shape prevents testing from one side (hence automatically
a sub/supersolution), but allows test-functions with non-zero gradient and
arbitrary Hessian from the other side.

In conclusion, we have proved that the only radial viscosity solutions to
(1.2) in a ball BR are the functions

hk(x) = C1 cos(
√
λk|x|), with λk =

(
(2k − 1)π

2R

)2

.

In particular, the only positive radial eigenfunction is h1(x) = cos( π
2R |x|).

We show next that the number
(

π
2R

)2 really is the principal eigenvalue of
BR.
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Lemma 4.1. For a ball BR we have

λ1(BR) =
( π

2R

)2
.

Proof. By the above calculations and the definition of λ1, we easily see that
λ1(BR) ≥ (

π
2R

)2. Suppose that we had

λ1(BR) > µ >
( π

2R

)2

and let 0 < ρ < R be such that µ =
(

π
2ρ

)2
. Define a function w by

w(x) =

{
cos(

√
µ|x|), if |x| ≤ ρ,

0, otherwise.

Then −∆∞w ≤ µw in BR and w ≤ 0 on ∂BR, which by Theorem 3.1
should imply w ≤ 0 in BR. Clearly this is not the case and therefore
λ1(BR) =

(
π
2R

)2. ¤
Since λ1(Ω1) ≤ λ1(Ω2) if Ω2 ⊂ Ω1, we can deduce from the above lemma

the estimate

(4.1)
(

π

2RE

)2

≤ λ1(Ω) ≤
(

π

2RI

)2

,

where
RE = inf{r > 0 : Ω ⊂ Br(x) for some x}

and
RI = sup{r > 0 : Br(x) ⊂ Ω for some x}.

In particular, λ1(Ω) > 0 for all Ω ⊂ Rn.
We do not know whether λ1 is simple even in the case of a ball. The

function h1(x) = cos( π
2R |x|) is only radial principal eigenfunction, but there

could exist non-radial principal eigenfunctions as well.

Remark 4.2. The above reasoning shows that the eigenvalue problem con-
sidered in this paper is quite different from the so-called ∞-eigenvalue prob-
lem (1.5) studied in e.g. [24], [23], [16]. Namely, in case of a ball BR the
first eigenvalue of the ∞-eigenvalue problem is 1

R and the corresponding
eigenfunction, unique up multiplication by a constant, is x 7→ R− |x|.

5. Existence results

Our main goal in this section is to show that the number λ1, defined
by (1.4), really is an eigenvalue of the infinity Laplacian. This amounts to
showing that the problem{

−∆∞u(x) = λ1u(x) in Ω,
u(x) = 0 on ∂Ω,

has a nontrivial solution. The general strategy for the proof is more or less
the same as in [5], but the details are quite different.

Before getting started with the actual proof, we need to recall a local
Lipschitz continuity estimate for the supersolutions of the infinity Laplace
equation. The proof can be found for example in [2] or [26].
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Lemma 5.1. Let u ∈ C(Ω) be a non-negative function such that −∆∞u ≥
0 in the viscosity sense in a domain Ω. If x0 ∈ Ω and 0 < r < R ≤
dist(x0, ∂Ω), then

(5.1) u(y) ≤ u(z)e
|y−z|
R−r for all y, z ∈ Br(x0).

Moreover,

(5.2) |Du(x)| ≤ u(x)
dist(x, ∂Ω)

for a.e. x ∈ Ω.

The following lemma gives us a useful characterization of the number λ1.

Lemma 5.2. Let Ω ⊂ Rn be a bounded domain and 0 < λ < λ1(Ω). Then
there exists a function w ∈ C(Ω) such that w > 0 in Ω, w = 0 on ∂Ω, and
−∆∞w = 1 + λw.

Proof. Since 0 < λ < λ1(Ω), there exists a positive function u ∈ C(Ω) such
that −∆∞u ≥ λu in the viscosity sense. Let η0 := minx∈∂Ω u(x) > 0 and
notice that for 0 < η < η0 the function uη := u − η is positive by the
maximum principle and satisfies

−∆∞uη ≥ λuη + λη.

Hence û(x) := 1
ληuη(x) is a positive supersolution of −∆∞v = 1 + λv. In

order to find a supersolution that vanishes on the boundary, we notice that,
given z ∈ ∂Ω, the function uz(x) = |x− z|1/2 satisfies

−∆∞uz(x) =
1
4
|x− z|−3/2 =

1
8|x− z|2uz(x) +

1
8
|x− z|−3/2

in Ω. Thus there exists ρ > 0, depending only on λ, such that −∆∞uz ≥
λuz + 1 in Bρ(z) ∩ Ω. By choosing C ≥ 1 so that, say, C

√
ρ
2 ≥ supΩ û, we

have that min{Cuz(x), û(x)} = û(x) outside the set Bρ/2(z) ∩ Ω. Hence it
follows that the function

U(x) = inf
z∈∂Ω

(
min{Cuz(x), û(x)}

)

is a positive supersolution to −∆∞v = 1 + λv that vanishes on ∂Ω.
Next we fix a ball B ⊂⊂ Ω of radius r > 0 and let uB be a positive radial

solution, obtained in the previous section, to{
−∆∞v = λ1(B)v in B,

v = 0 on ∂B,

normalized so that λ1(B)uB(x) ≤ 1 and uB(x) ≤ U(x) for all x ∈ B. In
fact, we have λ1(B) =

(
π
2r

)2 and uB(x) = C cos( π
2r |x− x0|), where x0 is the

center of the ball B. It is clear that the zero extension of uB is a subsolution
of −∆∞v = 1 + λv. Now the existence of the asserted solution w follows
from the standard Perron method, see [13, Section 4], and its positivity in
Ω from the Harnack inequality in Lemma 5.1. ¤

Theorem 5.3. Let Ω ⊂ Rn be a bounded domain and λ = λ1(Ω). Then there
exists w ∈ C(Ω) such that w > 0 in Ω, w = 0 on ∂Ω, and −∆∞w = λw. In
particular, λ1(Ω) is an eigenvalue.
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Proof. Let λk be an increasing sequence of numbers converging to λ1, and let
wk be a positive solution to−∆∞wk = 1+λkwk with wk = 0 on ∂Ω, provided
by Lemma 5.2. We first claim that the sequence supΩwk is unbounded.
Indeed, if this is not the case, then Lemma 5.1 implies that the sequence
(wk) is locally equicontinuous and thus converges (up to a subsequence)
locally uniformly to a positive viscosity solution w of{

−∆∞w = 1 + λ1w in Ω,
w = 0 on ∂Ω;

the fact that w = 0 on ∂Ω can be seen by using the (uniform) barriers of
the form x 7→ C|x− z|1/2, where z ∈ ∂Ω. Then wε = w + ε is positive in Ω
and it satisfies −∆∞wε = (1 − ελ1) + λ1wε. In particular, −∆∞wε ≥ µwε

for all µ ≤ λ1 + 1−ελ1
supΩ w , thus contradicting the definition of λ1 if ε is chosen

so that λ1ε < 1.
Let us now denote vk = wk

supΩ wk
and note that

−∆∞vk = λkvk +
1

supΩwk

in the viscosity sense. Since supΩ vk = 1 for all k, we deduce from Lemma
5.1 that (vk) converges (up to a subsequence) locally uniformly to a positive
function v satisfying

−∆∞v = λ1v.

Here the fact that supΩwk → ∞ as k → ∞ (at least up to a subsequence)
was used. By applying the same barrier argument as above, we see that
v = 0 on ∂Ω and that v 6≡ 0 in Ω. Hence we have found our eigenfunction
and the proof is complete. ¤

A slight variation of the reasoning used in the proof of Lemma 5.2 yields
existence results for more general non-homogeneous equations:

Theorem 5.4. Let 0 ≤ λ < λ1 and suppose that f : Ω → R and g : ∂Ω → R
are non-negative continuous functions. Then the Dirichlet problem

(5.3)

{
−∆∞φ(x) = λφ(x) + f(x) in Ω,

φ(x) = g(x) on Ω,

has at least one non-negative solution.

Proof. The proof is again based on the Perron method, and it suffices to
find a subsolution and a supersolution of (5.3) attaining the right boundary
values. Since the unique solution (see e.g. [21]) to −∆∞u = 0 satisfying
u = g on ∂Ω is non-negative, it qualifies as the subsolution. To construct
the desired supersolution, we first recall that in course of proving Lemma
5.2 it was observed that there exists a positive function w ∈ C(Ω) such that{

−∆∞w(x) ≥ λw(x) + 1 in Ω,
w(x) ≥ η > 0 on Ω.

Choosing a constant C > 0 such that C ≥ max{supΩ f,
1
η sup∂Ω g}, we see

that wC(x) := Cw(x) satisfies −∆∞wC ≥ λwC +C ≥ λwC + f(x) in Ω and
wC(x) ≥ g(x) on ∂Ω. In order to make sure that the right boundary values
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are attained, we use barriers of the form hz(x) = g(z) +C ′|x− z|1/2, where
z ∈ ∂Ω and C ′ ≥ 1. Since

−∆∞hz(x) =
C ′

4|x− z|3/2
→∞ as x→ z,

it follows that −∆∞hz ≥ λhz +sup f in Bρ(z)∩Ω for some ρ > 0 depending
on λ, sup g and sup f , but independent of z and C ′ ≥ 1. After choosing C ′
so large that hz(x) ≥ wC(x) outside Bρ/2(z) ∩ Ω, it is easy to see that

v(x) = inf
z∈∂Ω

(
min{hz(x), wC(x)})

is the kind of supersolution that we were looking for. ¤

6. An application: Decay estimates for the evolution equation

Let h ∈ C(Ω× [0,∞)) be a viscosity solution to the parabolic equation

(6.1)





ht = ∆∞h in Ω× (0,∞),
h(x, 0) = h0(x) on Ω× {0},
h(x, t) = 0 on ∂Ω× (0,∞).

This evolution problem (with more general boundary conditions) has been
recently studied in [22] and it appears in several applications, for example
in differential games, see [3] and [22].

In this section we are interested in the asymptotic behavior, as t → ∞,
of the solution h(x, t) of (6.1). Based on the well-known results for the
solutions of the ordinary heat equation, one expects h to decay to zero ex-
ponentially and that the rate of decay and the extinction profile are somehow
connected with the principal eigenvalue and the eigenfunction of the infinity
Laplacian, respectively. Since the problem is non-linear and very badly de-
generate, precise estimates are much harder to obtain than in the case of the
heat equation, where one can for example use the fact that the normalized
eigenfunctions of the Laplacian form an orthonormal basis for L2.

Nevertheless, we attempt to shed some light on the issue and at least
do manage to establish the exponential decay with (almost) the right de-
cay rate. The question of extinction profile seems harder to grasp, mainly
because it is not known what condition should replace the orthogonality
requirement in our non-linear setting. So, roughly speaking, instead of ob-
taining precise estimates for the difference |h(x, t)eλ1t − ϕ1(x)|, where ϕ1 is
a first eigenfunction, we are only able to bound the logarithmic difference

log
(
h(x, t)eλ1t

)
− logϕ1(x) = log

(
h(x, t)eλt

ϕ1(x)

)
.

For the purposes of our first result, suppose that Ω ⊂⊂ Ω̂ and let v ∈ C(Ω̂)
be a positive principal eigenfunction in Ω̂, i.e.,

{
−∆∞v(x) = λv(x) in Ω̂,

v(x) = 0 on ∂Ω̂;

here λ = λ1(Ω̂).
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Proposition 6.1. Let h, v and λ be as above. We have

sup
Ω×(0,∞)

h(x, t)eλt

v(x)
≤ sup

Ω

h+
0 (x)
v(x)

,

where h+
0 = max{h0, 0} denotes the positive part of h0.

Proof. Let us denote H(x, t) = h(x, t)eλt. A straightforward calculation
shows that H satisfies

(6.2)





Ht = ∆∞H + λH in Ω× (0,∞),
H(x, 0) = h0(x) on Ω× {0},
H(x, t) = 0 on ∂Ω× (0,∞).

Indeed, if ϕ(x, t) is a test-function for H, then ϕ(x, t)e−λt is a test-function
for h and (6.2) easily follows from (6.1). Moreover, by replacing h0 with
its positive part if necessary, we may assume that the initial data h0 is
non-negative.

It clearly suffices to show that

sup
Ω×(0,T )

H

v
= max

{
sup
Ω

h0

v
, 0

}

for any T > 0. We argue by contradiction and suppose that

(6.3) 0 <
H(x̂, t̂)
v(x̂)

= sup
(x,t)∈Ω×(0,T )

H(x, t)
v(x)

for some x̂ ∈ Ω, 0 < t̂ ≤ T . Notice that here we need the fact that v > 0 in
Ω. Let w = log v and θ = logH, and observe that

θt = ∆∞θ + λ+ |Dθ|2
and

∆∞w(x) + λ+ |Dw|2 = 0
in the viscosity sense in a neighborhood Q of (x̂, t̂) where H is positive.
Finally, if wε(x, t) = w(x) + ε

T−t for ε > 0, we see that wε is a strict
supersolution of

(6.4) ut = ∆∞u+ λ+ |Du|2.
Moreover, wε(x, t) → ∞ uniformly in x as t → T and θ − wε has a local
maximum in Q for ε > 0 small enough. For simplicity of notation, we denote
this maximum point also by (x̂, t̂) and notice that t̂ < T .

The rest of the proof is now a quite standard application of the maximum
principle for semicontinuous functions [13]. We maximize

ψj(x, t, y, s) = θ(x, t)− wε(y, s)− j

4
|x− y|4 − j

2
(t− s)2

over Q×Q and conclude that for j large enough, the maximum is attained at
some point (xj , tj , yj , sj) ∈ Q×Q for which (xj , tj) → (x̂, t̂), (yj , sj) → (x̂, t̂)
as j →∞, and there exist symmetric n×n matrices Xj , Yj such that Yj−Xj

is positive semidefinite and

(j(tj − sj), j|xj − yj |2(xj − yj), Xj) ∈ P2,+
θ(xj , tj),

(j(tj − sj), j|xj − yj |2(xj − yj), Yj) ∈ P2,−
wε(yj , sj).
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See [13] for the notation and the relevant definitions. Using the facts that
θ is a subsolution and wε a strict supersolution of (6.4), this implies in the
case xj 6= yj that

0 <j(tj − sj)−
(
Yj

(xj − yj)
|xj − yj |

)
· (xj − yj)
|xj − yj | − λ− j2|xj − yj |6

− j(tj − sj) +
(
Xj

(xj − yj)
|xj − yj |

)
· (xj − yj)
|xj − yj | + λ+ j2|xj − yj |6

= −
(
(Yj −Xj)

(xj − yj)
|xj − yj |

)
· (xj − yj)
|xj − yj |

≤ 0,

a contradiction. Since a similar conclusion holds in the case xj = yj due to
the inequality Xj ≤ 0 ≤ Yj (cf. the proof of Proposition 3.2) we see that
(6.3) does not hold and hence we are done. ¤

Corollary 6.2. Let h ∈ C(Ω× [0,∞)) satisfy (6.1) with h0 ∈ C(Ω). Then

sup
Ω
|h(x, t)| = o(e−λt) for all λ < λ1(Ω).

Proof. It is enough to notice that we may run the proof of Proposition 6.1
precisely as it is if the function v in it is any positive (in Ω) function that
satisfies −∆∞v ≥ λv in Ω. Such a function exists for every λ < λ1(Ω) by
the definition of λ1(Ω) and hence our claim follows. ¤

Proposition 6.1 gives a kind of upper estimate on the decay of the solutions
to the evolution equation (6.1). Our next result shows that at least locally
we have a lower estimate as well. To this end, let us suppose Ω1 ⊂⊂ Ω and
let u ∈ C(Ω1) be a positive principal eigenfunction in Ω1, i.e.,

{
∆∞u(x) + µu(x) = 0 in Ω1,

u(x) = 0 on ∂Ω1;

here µ = λ1(Ω1). Notice that if h0 is positive, h > 0 in Ω × (0,∞) by the
Harnack inequality, Theorem 6.1 in [22].

Proposition 6.3. Let h, u and µ be as above, and suppose that h0 is positive
in Ω. We have

sup
Ω1×(0,∞)

u(x)
h(x, t)eµt

= sup
Ω1

u(x)
h0(x)

.

Proof. We can apply the same argument as in the proof of Proposition 6.1
with some minor changes. Instead of (6.3), we assume that

(6.5) 0 <
u(x̂)

h(x̂, t̂)eµt̂
= sup

(x,t)∈Ω1×(0,T )

u(x)
h(x, t)eµt

for some (x̂, t̂) ∈ Ω1×(0, T ]. By defining w = log u and θε = log(h(x, t)eµt)+
ε

T−t , we have that w and θε are a solution and a strict supersolution, respec-
tively, to (6.4) (with λ replaced by µ), and w − θε has a local maximum at
some point in Ω1 × (0, T ). As in the proof of Proposition 6.1, the desired
contradiction now follows from the maximum principle for semicontinuous
functions. ¤
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Finally, we observe that the estimates in Propositions 6.1 and 6.3 can be
made explicit by using the estimate (4.1) for the principal eigenvalue.
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