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In this paper, we study the relationship betweeharmonic functions and absolutely minimizing Lipschitz
extensions in the setting of a metric measure sgagel, 1). In particular, we show that limits gf-harmonic
functions (ap — oo) are necessarily the>-energy minimizers among the class of all Lipschitz functions with
the same boundary data. Our research is motivated by the observation that wipHkatraonic functions in
general depend on the underlying measuren many cases their asymptotic limit as— oo turns out have a
characterization that is independent of the measure.
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1 Introduction

Let @ c R”™ be a bounded domain anfl: 92 — R a given Lipschitz continuous function. A well-known
theorem due to Bhattacharya, DiBenedetto and Manfredi [5], suggested earlier in the work of Aronsson [2],
states that the sequente,) of the uniquep-harmonic extensions of to €2, that is,u, € W*(Q) N C(Q)
satisfyingu, = f onodQ with

/ |V, [P do < / |Vul|Pdz  forall v such that, — v € Wy (Q),
Q Q

converges ag — oo to a functionu,, € W () N C(Q) that satisfies

ess sup |V (2)] < esssup |Vo(x)] (1.2)
zeV zeV
wheneverl C Q is open andv € W1>°(V) is such thatu,, = v on dV. Such functions are necessarily
oco-energy minimizers among the class of all Lipschitz functions with the same boundary data. In the literature,
functions that satisfy (1.1) are usually callgosolutely minimizing Lipschitz extensiq@dviLEs for short). The
name refers to the fact that a function satisfies (1.1) if and only if it is an optimal Lipschitz extensida €fin
the sense that

Lip(ueo, V') < Lip(v, V) whenevert/ C Q andu., = v ondV. (1.2)

The equivalence of (1.1) and (1.2), which is not at all trivial (see [3]), shows, in particular, that while the definition
of p-harmonic functions clearly depends on the measure used in integration (abexdithensional Lebesgue
measure), the limit function., can be characterized without this measure. This observation raises many natural
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guestions. What happens if we replace the Lebesgue measure by another meisthie definition ofp-
harmonic functions? Do the-harmonic extensions (if there are any) then converge to some functpr-aso;

and if so, is the limit function the same as in the case of the Lebesgue measure? Or more generally, if we are
given two measures; andus, what conditions ensure that the asymptotic limits of their assocjatestmonic
extensions coincide?

The objective of this paper is to investigate these questions in the setting of a metric measuf&Xsgaacg
Under suitable assumptions on the space, there is a relatively well-developed theory phaothonic exten-
sions and AMLEs in this generality (see [23], [15], [21], [7]), and thus there is no need to restrict the attention
to the special case &™. The abstract setting makes it easier to identify the properties of the space and measure
relevant to our study, and also gives more flexibility when we need to construct counterexamples. As a first step,
we will show that, under certain natural assumptions,gt@rmonic functions converge, as— oo, to a limit
function that satisfies a metric space version of (1.1). In general, the lippihafmonic functions is not even
Lipschitz continuous, nor does its Lipschitz continuity guarantee that it would satisfy the condition (1.2). In
order to establish that a limit function for which (1.1) holds also satisfies (1.2), we need to assume that the space
(X, d, 1) has a “weak Fubini property”; this is used to show, roughly speaking, that sets of measure zero can be
neglected when computing the Lipschitz constant of a function, a fact that is not true in general. The proof of the
equivalence of (1.1) and (1.2) is rather involved, and as in [3], it is done with aid of an auxiliary concept called
“comparison with cones” introduced in [9]. Let us also mention that while, in viewing (1.1), it might seem that
the asymptotic limits of thg-harmonic extensions associated to the measuresd ., coincide if the measures
are mutually absolutely continuous, this is not always the case; we give a counterexample in Section 3.

The paper is organized as follows. In Section 2, we state the metric space versions of conditions (1.1) and
(1.2), and give some remarks concerning their relationship. Note that in order to generalize (1.1), we have to find
an appropriate substitute for the modulus of the gradiemt. It turns out that the local Lipschitz constant will
do quite well for this purpose since in the case of Lipschitz functions it coincides with the mipiwedk upper
gradient that appears in the definition fidarmonic functions in the metric setting. Section 3 contains a proof
for the convergence g@fFharmonic functions to a function satisfying (1.1) in the case wl¥énl, ;1) is a complete
length space supporting an appropriate Poia@aequality and the measures doubling. The comparison with
cones -property (which is also defined in Section 2 below) is shown in Section 4 to be equivalent to (1.2) in any
length space. A much harder task is to show that (1.1) is also equivalent to comparison with cones. This is done
in Section 5 under the key assumption of the weak Fubini property.

There is nowadays a vast literature on AMLEs and associated problégfis @specially on the closely related
topic of the infinity Laplace equation. We refer the reader to the paper [3], which contains an extensive list of
references on the subject. The closely related issue of the dependence of the asymptoticphh@trabnic
functions on the metrid has been considered e.g. in [3], [24], and [4].

2 Definitions

We assume thatX, d, 1) is a metric measure space such that the measiseBorel regular, non-empty open
sets have positive measure and bounded sets have finite measure.
Given a setd C X and a Lipschitz functiorf on A, we define the global Lipschitz constant to be the number

: [f(z) = f(w)l
Lip(f,A) := su — T
P A cwedga d(TY)
and the local Lipschitz constant to be the functidp f defined onA by
Lip f(z) := lim sup M_
r—0+ yEB(I,T)\{I} d(:['7 y)

LetQ C X be a bounded domain arfd: 2 — R be a Lipschitz function. Using the global and local Lipschitz
constants, we define the metric space versions of conditions (1.1) and (1.2) of the introduction.

Definition 2.1 A functionu € C(9) is said to be arabsolutely minimizing Lipschitz extensiof f in €,
abbreviated AMLE (Q), if u = f on 9 and for all subdomaing C €,

Lip(u,U) = Lip(u, 0U).
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Notice that this definition is equivalent to (1.2)[R¥* because
Lip(v,U) = Lip(v,U) > Lip(v,U)

for any Lipschitz function. Furthermore, the McShane-Whitney extensions’,, of u from 9U to U satisfy
Lip(Ay,U) = Lip(Y,,U) = Lip(u, 0U).

Definition 2.2 A functionu € C(9Q) is said to be astrongly absolutely minimizing Lipschitz extensafry
in 2, abbreviated st-AMLE((Q?), if w = f ondQ and in addition, for all subdomairis C €2 and for all functions

v € Lip(U) with w = v on 9U the following inequality holds true:

p-esssup Lip u(x) < p-esssup Lip v(x).
zeU zeU

If X = R"™, equipped with the usual Euclidean distance, and the Lebesgue measure, theip u(z) =
|[Vu(z)| at every point of differentiability. Thus in this special case,

p-ess sup Lip u(z) = esssup |[Vu(z)|
xcU xeU
for all Lipschitz functions by the Rademacher theorem, and hence Definition 2.2 is a natural generalization of
(1.1). The descriptor “strongly” is reminiscent of the Euclidean case [3], where the inclusion st-ARLE
AMLE ¢(Q) is relatively easy to establish, while the reverse inclusion AMISE) C st-AMLE () is more
difficult. Note, however, that the inclusion st-AMLE?Y) C AMLE () does not always hold in the setting of
metric spaces, see Example 5.3.
We will prove, under suitable conditions, that the classes AMICB and st-AMLE; (£2) coincide by using an
intermediate concept of comparison with cones, which we define next. To this endaglvenR andzy € X,
let us denote by, ; 5, the “cone function” onX defined by

Ca,b,zo(x) =b + ad(fE,(L‘o).

The motivation for considering the cone functions comes from the fact that the McShane-Whitney extensions
Ay, T, ofu from U to U are given by

T,(x) =inf{Cyup4(x) : y € OU,b=u(y), anda = Lip(u,0U) }
and
Ay (z) =sup{Capy(z) : y € OU,b = u(y), anda = — Lip(u, 0U) }.

Definition 2.3 A functionu € C(9) is said to satisfy the property obmparison with cones (2, abbreviated
CC(Q), if the following two conditions hold:

1. For all subdomaing C Q and for alla > 0, allb € R, and allzg € X \ U, we haveu < Cy 4 ,, onU
whenever < Cy 4 ., onoU.

2. For all subdomain& C Q and for alla > 0, allb € R, and allzyp € X \ U, we haveu > C_, ., onU
whenevern > C_, 4 ., onoU.

The concept of comparison with cones was originally introduced in [9], where it was used to study the regular-
ity properties of AMLEs inR". See also [3] and the references therein. Its adaptation to the metric space setting
is quite straightforward, and only the sign restrictiotr 0 needs some thought, cf. [7]. Indeed, with some addi-
tional assumptions on the metric space one can get rid of the requirerrefin the above definition. For exam-
ple, if X has the property that for all non-empty bounded open subsefsX with non-empty boundary and for
all pointszy € X\ U there exists a point; € OU and a point € U so thatd(zo, z) +d(z, 1) = d(z0, z1), then
we can remove the restrictian> 0 in the above definition. To see this, suppose thastisfies the comparison
with cones property in a domasn, and suppose that C Q is a subdomain such that< C,, ;, ., ondU for some
a<0andzy, € X \U. Note thatifW = {z € U : u(z) > Cqp ()} is nonempty, themw = C, 5 ., ONOW.
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By the above assumption, we find € 01 and a point € W so thatd(z, z) + d(z, z1) = d(z0, z1). It can be
verified via the triangle inequality th&l_,, ;. 4q(20,2,),20 = Ca,b,z- SinCe—a > 0 andu < C_g p1ad(z0,21),20
on oW, we see thatt < C_, p1ad(z0,21),20 ON W. However, asi(z, z) + d(z,21) = d(z0, 1) and hence
w(z) > Capzo(2) = C_g prad(z0,1),20 (), We have a contradiction; thuBy is empty. Metric spaces whose
every geodesic line segment is extendable to a bi-infinite geodesic line have the above property.

Propositions 4.1, 5.5 and 5.8 together demonstrate that in a proper length space that has the weak Fubini
property, a function is a strongly absolutely minimizing Lipschitz extension if and only if it is an absolutely
minimizing Lipschitz extension. If the measure in addition is doubling and supports a Roineguality (see
below), then Theorem 3.1 demonstrates the existence of such extensions. To prove the existence ofisRAMLE
functions, we us@-harmonic functions associated with the meagueess follows.

Given an open séf C X and a functionf : U — R, we say that a non-negative Borel measurable fungtion
onU is anupper gradienof f if for all compact rectifiable curvegin U the following inequality is satisfied:

Iﬂ@—fwﬂé/p%, 2.1)

~

wherex andy denote the two endpoints of If either of| f(x)|, | f ()] is infinite, the right-hand side of the above
inequality is also required to be infinite. It can be shown thgtig a Lipschitz function o/, thenLip f is an
upper gradient of .

For now let us fix an index with 1 < p < co. We say that a family of non-constant compact rectifiable curves
in U is of zerop-modulus if there is a non-negative Borel measurable fungtion U such thayy € L?(U) and
for all curves~ in this family the path integray’vgds is infinite. If the collection of non-constant compact
rectifiable curves for which the inequality (2.1) fails is a zgroodulus family of curves, then the functign
is said to be a-weak upper gradienof f. The uniform convexity ofL?(U), together with the fact that the
collection of allp-weak upper gradients gf in LP(U) forms a closed convex subset bf(U), implies that if
this convex subset is non-empty then theregsveeak upper gradient; of f in L?(U), uniquely determined up
to sets ofu-measure zero, so thb |-y < |pllL»w) for all p-weak upper gradients of f. Furthermore,
this minimal p-weak upper gradierthas the property that; < p p-a.e. inU wheneverp € LP(U) is ap-weak
upper gradient of .

A metric measure space is said to suppdft.@)-Poincaé inequality if there exist constanfs > 0 andr > 1
such that for all functiong : X — R, for all p-weak upper gradienisc L (X) of f, and for all ballsB C X,

loc
1/p

in}%%\u—c\dugCrad(B) 7Z PP dp
ce
B

7B

For more on upper gradients and Poiricarequality see [14], [22], [20], [8], and the references therein.

The collection of all functiong € L?(X) that have @-weak upper gradient € L?(X) is called the Newton-
Sobolev classV!?(X); see [22] for more on this class. Under the above conditions it is known that functions
in the Newton-Sobolev class satisfy versions of the Sobolev embedding theorems; see for example [11] or [22].
Given asety C X andl < p < oo, thep-capacity ofF is the number

o) =t ([l )+ it ol )

where the infimum is taken over all functionse N'?(X) with . > 1 on E, and over alp-weak upper gradients
p of u. For more on the definition and propertiespetapacity, we refer the reader to [18], [19], [17], and [23].

We say that the measureis doublingif there exists a constadt > 1 such that whenever € X andr > 0,
we have

u(B(x,2r)) < C u(B(z,7)).

It was shown in [8] that whenever the measpris doubling and supports @, p)-Poincaé inequality,Lip f is
the minimalp-weak upper gradient of any locally Lipschitz functign

Copyright line will be provided by the publisher



mn header will be provided by the publisher 5

Throughout the rest of this paper, tC X be a bounded domain with CaX \ ©2) > 0 for sufficiently large
p > 1; it should be noted here that CAp \ ©2) > 0 for sufficiently largep > 1 if and only if Cag (X \ ) >0
for some finiteg > 1. Furthermore, ifu(X \ ©2) > 0 then necessarily CgpX \ ©2) > 0 for all finite p > 1.

Given a bounded domain C X such thatX \ 2 has positivep-capacity and a functioi : X — R such that
f € LP(X) and f has ap-weak upper gradient ik (X ), we say that a function : Q — R is ap-harmonic
function onQ2 with boundary datgf if the following two conditions hold:

1. the zero extension af — f is in N*?(X),

2. wheneven : Q — R also has the property that the zero extension of f is in the classV!?(X), then

/%WS/%W
Q Q

We will show that ify is doubling and supports(@, py)-Poincaé inequality for somé < py < oo, then the
p-harmonic extensions of a Lipschitz boundary functforbnverge to a strongly absolutely minimizing Lipschitz
extension off asp — co. Moreover, if(X, d, i) is a proper length space satisfying a weak Fubini property (see
Section 5), then is a strongly absolutely minimizing Lipschitz extensionfaf and only if v is an AMLE(€2).

In particular, in that class of metric measure spaces, the properties of such limitsaafhonic extensions are
independent ofi. In general metric spaces, the clasgdfarmonic functions changes as the underlying measure
changes; in particular, the notion of minimaiveak upper gradient changes with both the measutE and the
index p, as illustrated in the example below. However, it is a deep theorem of Cheeger that if the metric space
is a length space (a property that is independent of the meadmposed onX), then amongst the class of all
doubling Borel regular measurgswith respect to which the metric space support$,a, )-Poincaé inequality,

the minimalp-weak upper gradient of a locally Lipschitz functigron X (the Lipschitz property of a function is
again merely a property of the metric and does not depend on the medssithe local Lipschitz constattip f
whenevep > po; hence the functions obtained as limitspafiarmonic functions (with respect to such measures
1) exhibit properties that are independent of the meagur&he first example below illustrates this property.
The second example below demonstrates that when the metric measure space supports @driajnetity the
results obtained in this paper fail.

Example 2.4 As in the book [13], we may consider theeightedp-Laplacianequation
—div(w(z) |Vu(z)|P~? Vu(z)) = 0 (2.2)

on a domain inR™. Solutions to (2.2) ar@-harmonic on the domain in the metric measure space obtained by
looking at the Euclidean spa&®' endowed with the Euclidean metric, but with the meagugiven by

dp(z) = w(z) don (),

wherew,, is the canonical Lebesgue measuréidn Shouldw be ap-admissible weight in the sense of [13] (see
Section 1.1 of [13]), then we always have solutions to (2.2). In order to consider explicit solutions, let us consider
more explicitp-admissible weights. Givefi > 0, consider the weight functiom given by

w(a) = [a*.
From the discussion preceding Theorem 1.8 of [13], it is clear that thigiadmissible weight for alp > 1.
Let © be the punctured unit ball iR™ centered at the origin® = B(0,1) \ {0}, and forp > n we consider
the boundary data fd@ given by f : R™ — R with f(z) = max{0, 1 — dist(«, S(0,1))} (whereS(0,1) is the
unit sphere iR™ centered at the origi). It can be seen by the use oblder’s inequality together with a polar
coordinate integration that the gt} is a set of positive-capacity whem > n + 26. A basic calculation shows
that the solution to (2.2) ife with the Lipschitz boundary datais given by

p—28—-n

up(z) = |z|* wherea = p—
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Note thatu,, depends on the measyevia the exponens, but asp — oo we haveu, — u.,, where
Uoo (7) = |

is clearly independent gf.
Example 2.5 Let X be the metric space obtained by imposing the Euclidean metric on the set

X :={z€C :|Arg(z)| <m/dor|Arg(—z)| < m/4}.

We may consider two measuresandu, on X as follows. Letu; denote the standard two-dimensional Lebesgue
measure onX, andus is given bydus(z) = e*l/‘z‘zdul(z). Then the collection of all non-constant curves
passing through the origin has positjirenodulus with respect to the measurewhenevep > 2, but has zero
p-modulus forall p with respect to the measure. Observe that these two measures are absolutely continuous
with respect to each other. However, jor- 2 the metric measure spat&, d, i1 ) is a doubling measure space
supporting &1, p)-Poincaé inequality, whereas the metric measure sgacel, 12) never supports a Poinér
inequality. If we consider the domaid C X given byQ) := {z € X : |z| < 1}, the boundary of) consists of
two disjoint circular arcs separated by a distagée If we consider the boundary function obtained by setting
the functionf to take on the value of on one of the two arcs artdon the other arc, the-harmonic extension

u, to 2 with respect the measuge; is given byu,(z) = 1 if z lies in the quarter-disc whose boundary is the
arc on which the data is, andu,(z) = 0 otherwise. The limit of these,, functions, agp — oo, yields the
same function which is not even locally Lipschitz continuous. On the other hangstthemonic extensions,
obtained with respect to the measurgyield a Lipschitz function as a limit a8 — oo; this limit function is
necessarily of the class st-AMLEQ?), though the limit of the functions,, is never a member of this class.

3 Existence of st-AMLE;((?)

In this section we will prove the existence of st-AMLE2) under the following additional assumptions. We will
assume thak is a complete length space (that is, the distance between each pair of pajings X is given
by d(x,y) = inf.,, £(~y), wherel(~y) denotes the length of the curyeand the infimum is taken over all compact
rectifiable curveg in X with end-pointsc andy) and that the measuyeis doubling. We will also assume that
(X, d, u) supports &1, pp)-Poincaé inequality for somd < py < oo. Under the assumption of the doubling
property of the measurg it is known that there exist§ > 0 such that whenever € X, 0 < r < R, and

y € B(z, R),

r\@
(5) n(Bla R) < CuBy.n).
If p > @, then functionsf in the Newton-Sobolev clas§!?(X) satisfy the following inequality for all pairs of
pointsz,y € X:

[f(a) = f)l < C [ D27 ipglleix) d(z, y) '~/ (3.1)
jeN

The important point here is that the constéhis independent of;, y, f, and is also independent pf(but it
depends on the doubling constant and(the, )-Poincaé inequality constant, withy < p). Herep; € LP(X)
denotes the minimad-weak upper gradient of. It should be mentioned that the results from the paper [8] show
that if f is a Lipschitz function, thep; = Lip f p-almost everywhere (here we use the fact that as a complete
doubling length spac is a geodesic space).

It was shown in [23] that under the hypotheses considered in this section, for every fufctiaN!:?(X)
there is a function. € N1'?(X) such thatu = f on X \ Q and whenever € N'?(X) is another function such
thatv = fonX \ Q,

/%@S/ﬁw
Q Q
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Suchp-energy minimizing functions are callgdharmonic extensionsf f to Q. It was also shown in [23] that
suchp-harmonic functions satisfy the comparison propertyy,lf. are two functions from the clas§!?(X)
such thatf > h on 012, then theirp-harmonic extensions; andu,, satisfy the inequality.; > w;, on 2.

Theorem 3.1 Suppose thatX, d, 1) is a complete length space. Under the assumptions that the measure
w is doubling and supports &l, pg)-Poinca® inequality, for every Lipschitz functiofion 952 there exists a
st-AMLE; (Q2)-extension.

Proof. Without loss of generality we may assume théa a Lipschitz function onX with bounded support
(by extendingf to all of X by a McShane extension and then damping dgitny a Lipschitz function which is
identically 1 on a bounded neighborhood @fand vanishes outside a larger bounded neighborhood). For each
p > max{po, Q} letu, denote the-harmonic extension of to Q2 as above. Then by inequality (3.1) and by the
fact that

IIpuPII’ip(X):/ pfcdu+/p5p duﬁ/ p’}du+/p’}du:/(Lipf)”du,
X\Q Q Jx\Q Q X

we see that the familfu, : p > ¢} is an equibounded and equicontinuous family Xnfor everyq >
max{pg, @}, and asX is complete, by the Arzela-Ascoli theorem it is a normal family, yielding a subsequence
(up, ) that converges locally uniformly itX' to a function that isl — Q/¢-Holder continuous. By a Cantor
diagonalization argument we can extract a subsequence, also déngtegd so that the limit functionu. is
Lipschitz continuous antimy, py, = oo.

Letv € N1P(X) be another continuous function dh such thaty = f on 92 and locally Lipschitz continu-
ous orf. Sinceu,, is thep,-harmonic extension of to 2, we have

/ P, At < / pF dp,
Q Q

1/pk 1/pk 1/pk

fpﬁkk du < fpgk du = 7[Lip vPr dp < p-esssup Lip v(x).
. v . . e
Q Q Q

and hence

Thus, by Hdlder inequality, whenever > ko,

1/17k0

][pﬁ';i du < p-esssup Lip v(x).
o zEQ

Now arguing as in the proof of Lemma 3.1 of [17], we may concludethat N7 (X) with apy,-weak upper
gradientp satisfying the inequality

1/pk,

][ pPro dp < p-esssup Lip v(z),
o e

and hence akip u, is the minimalpy,-weak upper gradient af,, we see that

1/pkg

][ Lip ube® dp < p-esssup Lip v(z).
e
Q

Next lettingkg — oo, we see that

p-ess sup Lip e () < p-esssup Lip v(x). (3.2
zEQ zEQ
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Itis also clear that.., = f on X \ 2, and in particular, = f ondf.
It now only remains to prove that for all subdomatiiscC 2 and for all functionsy € Lip(U) with us, = v
on oU the following inequality holds true:

p-ess sup Lip uoo (z) < p-esssup Lip v(z).
zeU zelU

To prove this, fix a subdomaiti C €2, and for eaclp;, we find thep,-harmonic extension,, of u., toU, and as

before obtain a locally uniform convergence of these functions to a funetiosuch that whenever € Lip(U)
With v = Vo, = us 0NIU, as in inequality (3.2) we get

p-ess sup Lip vo (z) < p-esssup Lip v(z).
zecU zeU
Hence it suffices to show that, = u.,. To do so, it is important to note that the sequefgg), was a
subsequence of the sequence used to construct
Sinceu,, — us Uniformly onU C Q2 (which is a compact set a6 is a complete doubling space and hence is
proper), we see that for all> 0 there is a positive integés, such that|u,, —usol|z~@v) < € Whenevek > k;
that is,us — € < up, < us + € 0NOU. Hence by the comparison theorem, we haye— e < u,, < v, +¢
onU whenevelk > k.. Lettingk — oo yields

Voo — € K Upo < Vs + €
onU. Lettinge — 0 now yields the desired result, completing the proof of the theorem. O

If X is not a length space, we will have to replace the condition

p-ess sup Lip u(z) < p-esssup Lip v(z)
zeU zecU

with

p-ess sup py () < p-esssup py ()
zecU zecU
in the definition of st-AMLE:(2) in order for the above proof to work. Note that by the results of [8], we have
pu =~ Lipu if u is a local Lipschitz function.

As Example 2.5 demonstrates, without the additional assumptions of the doubling property and the support
of (1,p)-Poincaé inequality, the limit ofp-harmonic functions, ap — oo, may not yield a function of the
class st-AMLE (€2) (even though the measurg considered in that example is mutually absolutely continuous
with a “nice” measure:;). The limit function obtained in that example was not even locally Lipschitz; for an
example where the limit function is also Lipschitz but fails to be of class AMIE, see the example discussed
in Example 5.3 below.

The existence of AMLE(2) can be obtained in any length space (without any assumptions on the measure
w) by using a variant of the classical Perron’s method. See [21], [15], [16] for detalils.

4 Equivalence ofCC(£2) and AMLE ,(2)

Proposition 4.1 SupposeX is a length space. Then a functiernis of classC'C(92) if and only if it is of class
AMLE, ().

Proof. First suppose that is of classCC(2), and fixU C Q. Letz,y € U. We will first show that
Lip(u, (U \ {z})) = Lip(u,dU). To do so, fixzy € U, and leta = Lip(u,dU), b = u(z). Thena > 0,
and asu is a-Lipschitz on9oU, we see that for aly € oU we have|u(y) — u(z)| < ad(y, z); that is,
Clapzo < U< Cqup ONOU. Hence as: is of classCC (), we seethaC_, 4., < u < Cyp, ONU. IN
particular, asc € U,

u(zp) — Lip(u, 0U) d(z, z9) < u(z) < u(zp) + Lip(u, 0U) d(x, zo).
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Sincezy € QU was arbitrary, we have that for al) € oU,
|u(x) — u(20)| < Lip(u, 0U) d(z, 20),
that is, u is Lip(u, OU)-Lipschitz onoU U {z} = 90(U \ {z}); hence the equalitfip(u,d(U \ {z})) =
Lip(u, 0U) follows. Repeating this process for the &t {z} with respect to the poinj, we also see that
Lip(u, 9(U \ {z,y})) = Lip(u, 0U),

that is,|u(z) — u(y)| < Lip(u, 0U) d(z, y). Sincex,y € U were arbitrary, we obtaihip(u, U) = Lip(u, 0U),
in other wordsy is of class AMLE, ().

To complete the proof, we now show that functions of class AMISE) are also of clas€'C(€2). We prove
this by contradiction. Supposeis a function of class AMLE(2) but not of clas€"'C'(Q2); therefore, there exists
a subdomaiV C 2 anda > 0, b € R, and a pointy € X \ U, such that either

1. u < Cyp,., 0nOU butitis not true thatt < Cy ., ONU, OF
2. u>C_g4, 0NOU butitis not true thatt > C_, 5 ., onU.

Since—u is of classC'C(§2) whenever is also of clasg”'C/(£2), without loss of generality we may assume that
the first case above occurs; that is, the set

W:={zeU: ulx)>Cup(2)}

is non-empty. Since the two functionsandC, ; .,, are continuous, therefoi& is a non-empty open subset of
U, withu = Cy .., ONOW. We fix a pointr € W. Sinceu = C, ;, ,, 0N OW, we see thaLip(u, OW) < a. As

u is of class AMLE, (©2), we therefore havkip(u, W) < a (we may replacéV with a connected component of
W containingz here). On the other hand, a85is a length space, for eveey> 0 we can find a curve, in X
joining = andz, such that it's lengtif(~.) < (1 +¢€)d(x, zo). Sincex € W andz, ¢ W, the curvey. must cross
OW, lety,. be such a point. Let. ; andy, » denote the two subcurves of joining = to y. and joiningy. to z,
respectively. Then

0(ve) = €(ven) + Uve2) = d(x, ye) + d(ye, 20)-
By the definition ofiV, asz € W, we see that there is a positive real number 0 such that
() > Copoy(®) +6 =b+ad(z,20) +0 > b+a[(1+e€) (y)] + 6.
We choosé) < € < 1,sothat(1 +¢)~! > 1 —¢€ > 0. Thus,
w(x) > b+ a(l —e)d(x,ye) + d(ye, 20)] + 6
> b+ ad(Ye, 2z0) + a(l — €)d(x,ye) — aed(ye, z0) + 6.
Sincey. € 0W and henceu(y.) = Cop 2, (ye) = b+ ad(ye., 20), we have

[u(z) — u(ye)| 6 — aed(ye, 20)
d(z, ye) d(z,ye)

SinceW is a bounded open set, we see that d(z,y.) < D := diam(W) < oo, andd(y.,20) < A :=
max{d(w, z9) : w € W} < co. Therefore we may choogesmall enough so thdt— aeA > §/2, to obtain

>a(l—¢€)+

|u(z) — ulye)|

i) >a(l—¢€) +

2D’
that is,

Lip(u, W) = Lip(u, W) > a(l - ¢) + %

. : 4] - o
Lettinge — 0 yieldsLip(u, W) > a + 2D > a, a contradiction. Hence it is necessary théte of class”C(Q?)
as well, thus completing the proof. O
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5 Equivalence ofCC(£2) and st-AMLE ,(12)

In this section again we assume tat, d, 1) is a length space. It turns out that this assumption is insufficient to
prove that the class&sC'(€2) and st-AMLE, (©2), and consequently, the classes AMI(R) and st-AMLE,(2),
are equivalent. We therefore need the following assumption in addition to the others above.

If T is a family of curves inX, andl < p < oo, thep-modulusof T" is the number

MOdp(F) = ir/}f ”PHiy(Xy

where the infimum is taken over all non-negative Borel measurable fungiionsX such that for each curve

~ € T the path integraywpds > 1. Ahlfors and Beurling first gave the concept of moduli of curve families

in the setting of planar domains in [1], (they termed this concept extremal length), and this concept was further
developed and axiomatized to a more general setting by Fuglede in [10]. It was shown in [20] that dfamily

is of zerop-modulus if and only if there is a non-negative Borel measurable fungtiom X with p € L?(X)

such that for each € T, the integralf7 pds is infinite. It is also easy to see that the empty family has zero

p-modulus and that whenevér C X is of zerou-measure, the collectioii}; of all curvesy in X for which
H(]y| N E) > 0is of zerop-modulus.

Definition 5.1 We say thatX has aweak Fubini propertyif there existl < p < oo and two positive
constantsC, 7y such that whenevel < 7 < 75 and B; and B, are two balls inX with dist(B1, By) >
7 max{diam(B ), diam(B5)}, then Mog,I'(Bq, B2, 7) > 0. HereI'(B1, B2, 7) denotes the collection of all
compact rectifiable curvesin X joining B, and B, such that(v) < dist(B;, By) + CT.

The following key lemma demonstrates the importance of the above property.

Lemma 5.2 Let X be a length space that has the weak Fubini property Bhdbe a non-empty open subset
of X. If u € Lip(W), thenp-ess sup, ¢y Lip u(x) = sup, ¢y Lip u(x).

Example 5.3 For general metric measure spaces the conclusion of this lemma does not hold. Indeed, one can
obtain a counterexample by pasting a line segment to two disjoint closed triangular regivharid using the
length metric and the restriction of the two-dimensional Lebesgue measure to this set. A non-constant function
that is constant on the two triangular regions but changes in a Lipschitz manner along the line segment will fail
to satisfy the above lemma. However, we do not know whether it is possible that the conclusion of the above
lemma holds true always if we assume that the measure of non-empty open sets are positive. Note that in the
above example functions that are constant on the closed triangular regigndamonic for alll < p < oo,
and hence can yield as a limit (as— co) a function that is of class st-AMLE(?), but not of class AMLE(€2).

Proof. Leta = p-esssup, oy Lipu(z). Clearlya < sup,cyy Lipu(z). LetE = {y € W : Lipu(y) >
a}. It suffices to show that? is empty. Note thaj(E) = 0. Thus the familyl';, of all curvesy in X for
which H!(]y| N E) > 0 is of zerop-modulus. Hence ModT'(Bi, B2,7) \ T'f;) > 0 whenever ballsB;, By
and numberr satisfy the definition of weak Fubini property. It suffices to show that for eveey W there is
a neighborhood of in which w is a-Lipschitz continuous. Sinc® is open, we may choose> 0 for which
B(z,10Cr) ¢ W, whereC is from the definition of the weak Fubini property. Letz € B(x,r), and for
0 < 27 < min{1, 7, d(y, 2)}, chooseB;, = B(y,7/2) andBy = B(z,7/2). ThenB, U B, C W, and

dist(By, Ba) > d(y,2) — 7 > 21 — 7 =T,

with max{diam(By),diam(B3)} < 7 < 1. Therefore asX satisfies the weak Fubini property, we have
Mod, (I'(B1, B2, 7) \ T'f) > 0, in particular,I'(B;, B2,7) \ I';, # 0. Let~, be a curve from this family,
and lety., z, be the endpoints of, from B; and B, respectively. Then a&*(|v.| N E) = 0, we see that

[u(yr) — u(zr)] < / Lipuds < / ads =al(y,) <ald(yr,z)+ C1].

T T

As 7 — 0 we see thatu(y,) — u(y), u(z:) — u(z), andd(y,,z;) + C7 — d(y,z). Hence,|u(y) —
u(2)] < ad(y, z). Sincey, z € B(x,r) was arbitrary, we see thatis a-Lipschitz onB(x, r), and in particular,
Lipu(z) < a, thatis,z ¢ E. ThusFE is empty, completing the proof of the lemma. O
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It should be noted here that the weak Fubini property does not by itself imflya-Poincaé inequality.
Indeed, by joining countably many Euclidean balls of small diameter by tubes of fixed length whose diameter gets
narrower, we obtain a metric measure space (with length metric generated from the underlying Euclidean metric
and the natural Lebesgue measure) that has the weak Fubini property for<any < oo (precisely because
we can run a Fubini type decomposition of volume integrals on this space), but has no ®anecprality.
On the other hand, even(&, 1)-Poincaé inequality is not sufficient to guarantee the weak Fubini property, as
demonstrated by the-dimensional unit sphere, equipped with the Euclidean metric anghthel )-dimensional
Hausdorff measure; the obstacle here is that under the Euclidean metric the space is not a length space. In general,
the Poincag inequalities only guarantee quasiconvexity. However, it would be interesting to know whether if
the space is a length space and non-empty open sets have positive measure, then the space has the weak Fubini
property or not. Examples of spaces exhibiting the weak Fubini property include Euclidean domains, Riemannian
manifolds, Carnot groups, and the metric spaces constructed by Bourdon and Pajot in [6]; the proof of this fact
essentially follows from the fact that in these spaces the measure admits a Fubini type decomposition.

Lemma 5.4 Let X be a length space arid # X be a non-empty open subset®df If u € Lip(W), then

Lip(u, W) < max{Lip(u, 0W), sup Lipu(z)}.
zeW

Proof. Letz,y € W. SinceX is a length space, for every positive integewe can find a curve,, in X
joining z andy such that(v,,) < d(z,y) + % If ~,, lies in W for sufficiently largen, then ad.ip u is an upper
gradient ofu (see for example [12]), we have

M@—MWS/MwﬁéGwa@>MM

zeW

n

and lettingn — oo we see that

o) = ulo)| < (sup Liputo)) dle.). (5.1)

If for all sufficiently large values of. we havey,, leavingl, then for each such let z,, andw,, denote the first
time ,, leavesiV and the last timey,, entersiV, by breakingy,, up into three piecesy, 1, v, 2, andy, 3, where
n,1 JOINs z andz,, and lies inWV except for the endpoint,,, and-, 3 joins w, andy and lies inWV except for
the endpointv,,, and the subcurve, , joins the two points,,, w,, € dW. Therefore, as before we see that

[u(2) — u(m)] < u(z) — uen)| + [u(zn) — wawn)] + o) — u(y)|
< ((sup Lip (o) ) [6030.0) + €202)] + Lip(0,0) v 0,)

< max{Lip(u, OW), Sél‘g‘)/ Lipu(x)} [l(Yn,1) + €(n,3) + £(Vn,2)]

< max{Lip(u, OW), sup Lipu(x)} [d(x,y) + (1/n)].
zeW
Lettingn — oo yields the desired inequality. O

Proposition 5.5 If X satisfies the weak Fubini property, then every function of the class st-AMEs of
classCC(2).

Proof. Suppose is of class st-AMLE, (€2) but not of clas€"'C(€?). Then as in the proof of Proposition 4.1,
we obtaina > 0, b € R, an open setV C (, and a pointzy € X \ W such thatu = C, 3, on W but
u > Cyp.,, ONW. Sinceu is of class st-AMLE, (©2), we see that

p-esssup Lip u(z) < p-esssup Lip Cy p 2, (2) < a.
zeW zeW

Copyright line will be provided by the publisher



12 Petri Juutinen and Nageswari Shanmugalingam : AMLES in metric measure spaces

Thus, by Lemma 5.2, we havep,y Lipu(z) < a. In particular, by Lemma 5.4, we see tHzp(u, W) <
max{Lip(Cy p, 2, 0W),a} < a. Butthen, for allz € W and ally € OW we haveju(z) — u(y)| < ad(z,y),
and therefore,

u(z) <u(y) +ad(z,y) = Capz(y) +ad(z,y) = b+ ald(y, z0) + d(z,y)].
Sincey € W was arbitrary, we see that

< i .
u(z) <b+a inf ld(y, 20) + d(z,y)]
Now as in the proof of Proposition 4.1, for every- 0 we choose a curve. joining z andz, in the length space
X such tha?(v.) < (1 + €)d(z, 20), and lety. € W be a point at which this curve interseét8’. Thus,

u(z) < b+ ald(ye, 20) + d(z,ye)] < b+ al(ye) < b+ a(l+€)d(z, zp).

Lettinge — 0, we see thati(z) < b+ad(x, z0) = Cap, (x), thatis,xz ¢ W, a contradiction. Therefore it must
be true that is of classCC(2). O

The proof of the converse implication, that every function of the 2642 is of class st-AMLE,(Q?), is
slightly more complicated and requires some preparatory work. Let us first introduce some notatiore Hor
and0 < r < dist(x, 092), we define

Si(z,r):= sup (u(z)_um) Sy (z,r):=  inf (M)

{z:d(z,x)=r}

and, if the limits exist,

u
r—0 r—0

SH(z):= lirn+ St (z,r), S, (x):= hm+ Sy (x,r).

In the setting of general metric spaces, it is not always true that<f r < dist(x,9Q) then B(x,r) C Q.
However, it should be noted that if the metric space is a length space thenifor &llwe havedist(x, X \ Q) =
dist(z, 002) and hence3(x,r) C €.

If uis of classC'C (), thenS;' (z,r) is nonnegative and nondecreasing jandS,, (z, r) is nonpositive and
nonincreasing. In particular, in that caSg (z) andS;, (=) are well-defined. To prove these facts, we first notice
that sincew < Co s, ONOB(x, r) for anyzy € X \ B(z,r) andM = sup{u(z) : d(z,z) = r}, we have

u(lz) < sup  u(z), that is, sup (u(z)—u(x)) 2 0.
{z:d(z,x)=r} {z:d(z,2)=r} r

ThusS;"(z,r) > 0. The monotonicity follows by comparingto the conelg+
B(z,r) \ {«}; this yields

in the punctured ball

(z,r),u(w),®

u(z) < u(x) + S (x,r)d(z, 2) forall z € B(z,r).

Hence

M < SF(xz,r)  forall z such thatl(z,z) = 5,0 < s < r,

and we obtairf; (x, s) < S;" (z,r). The claims concerning,, (z, r) follow by noticing that is of classC'C ()
if and only if —u is of classC'C(2) and thatS; (z,r) = —S*,, (=, 7).

Lemma 5.6 If u is of classC'C(Q2), thenS;| (x) = —S;, (x) = Lip u(z) for everyx € Q.
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Proof. First, by definition,

Lipu(z) = lim sup [u@) = uy)| > limsup sup (u(y)—u(m))
r=0% yeBarn\fzy  d(T:Y) POt d(z.y)=r T
= lim S7(x,r) = 57 (2),

whenceLip u(z) > S, (z). For the converse, we fix € Q and for0 < r < 1 dist(z, 9Q) we consider a point
y € Q for whichd(z,y) = r. Forn € N, let~,, be a path, parametrized by arc length, joinintp y such that

Lyn) < d(z,y) + % Let I,, denote the interval which is the domain of the map and consider the function
gn : In — R given byg, (t) = u(y,(t)). Then

gn(t + h) B gn(t) _ U(’}/n(t + h)) ( (t))

h N h
w(yn(t+h)) = u(yn(t)) dlyn(t+h), n(t))
n(t)) h

),
d(n(t + h), vy
S Omlt), dnt+ ), 7 (p))) L2200

h)
< Su (1), dlyn(t + ), 7a (1)),

where we used the fact th@t< d(v,, (t+ h),v,(t))/h < 1. Therefore, we see that (t) < S (v, (t)) whenever
g, (t) exists. Observe that asis a Lipschitz function, so ig,,; therefore, for almost everyy € I,, we see that
g, (t) exists and that

IA

U(y)—U(x)=/ gil(t)dté/l Si(vn(t))d%( sup SJ(Z)) £(vn)

I, 2€vn (In)

< <Zei21’8n)53(2)> {d(%y) + H :

After lettingn — oo we therefore have

. lu(z) —u(y)| ..
L - 1 27 VY < lims 5 S+ .
pule) =l S Ty S imsw | s S ()

Next we recall that — S, (2, s) is nondecreasing and notice that- S, (z, s) is continuous (becauseitself
is even Lipschitz continuous). Thus

lim sup < sup Sj(z)) < lim sup ( sup SJ(Z,S)) =St (z,s)
r—0+ z€B(x,2r) r—0t z€B(x,2r)

for any s > 0 small enough. This shows thatp u(z) < S, (z, s) for all s sufficiently small and consequently
Lipu(z) < S (x) by the definition ofS; (z).

We have thus far showed thbip u(z) = S; () for everyz € Q. Sinceu is of classCC(Q?) if and only if
—u is of classCC(Q), andS; (z) = —ST,(z), we have

Sy (z) = =87, (z) = — Lip(—u)(«) = — Lipu(z),
which completes the proof. O

Lemma 5.7 Letu be of class®C(2), zp € Q, and0 < r < dist(xzg, 0N). If 21 € Q is such thati(zg, z1) =
randu(z1) = supy(y, .)= u(2), then

St (zo,7) < S (21, 5) forall 0 < s < dist(zg,09) — .
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Proof. Lety, be a path joininge; to xo, parametrized by arc length, such tHét,,) < r + % Since
U < Cat (40 ), u(zo),00 ON the boundary of the punctured b&l{xo, ) \ {zo}, we have

u(r) < u(zo) + S (zo,7)d(20, 7) forall z € B(xzg,r)

by the assumption thatis of classC'C'(€2). In particular,

umm»<umm+&nmmmmm%a»<Mmrm(““*”mm)

r

r

=u(z1)+ (r—t) (u(zo)u(xl)> =u(xy) + (r —t) (=S (o, 7))

for all ¢ < r for which~,(¢t) € B(zo,r). Here we used the fact thaf, is parametrized by arc length and the
assumptionS;f (zg,r) = M For sufficiently largen we see that the curve, lies entirely inQ2. For
suchn we look at allt < r for which~,,(¢) is in B(zo, ) N B(z1, dist(z1, 2)); for sucht we have

u(z) — (@) _ u(a(®)) — u(zs)
)S A1 7m(®))

(—S;’(wo,r))

_ : (
(1) = f
Su (xlad(‘rh’% (t))) d(ml,z):lél(:vl,"/n(t)) ( d(x17'7n(t))

r—t r—t
< (=8F < -
S Ty @) S

for all sucht’s. Here we used the facts thédtz:,v,(t)) < r + = — ¢ and that—S (zo,7) < 0. Note that for
each fixed: < r that is sufficiently close to, 7, (¢) is in B(xo,r) N B(x1, dist(x1, 2)) for all sufficiently large
n. We fix sucht for now. Because: is Lipschitz continuousS, (z1,r — t) = lim, . Sy (21,7 + £ — ).
Hence, asi(z1,7,(t)) <7+ = — t ands — S (1, s) is nonincreasing, we finally obtain, by letting— oo,
that

Sy (z,r—t) = lim S, (z1,r+ 1 —¢)) <limsup (S, (z1,d(z1,7(1))) < (=5 (20,7))

for each such fixed < r. Lettingt — r~ givesS,, (z1) < —S;/ (x¢,r), which by Lemma 5.6 yields
Su (1) = =8, (x1) = S (zo, 7).

Sinces — S, (21, s) is nondecreasing, we hav&' (z1,s) > S, (zo,7) forall 0 < s < dist(zo,9Q) — r, as
desired. O

Recall that a metric space is said to be proper if every closed and bounded subset of that space is compact.

Proposition 5.8 Let (X, d) be a proper length space satisfying the weak Fubini property. Then every function
u of the classC'C(2) is of class st-AMLE(2).

Proof. We argue by contradiction and assume that a Lipschitz funetisrof the classCC(Q?), but is not
of class st-AMLE, (€2). This means that there exists an openiset (2, a Lipschitz functiorv andz, € V' such
thatu = v on9V and

Lipu(zg) > sup Lipwv(z) > 0.
zeV

Here we used Lemma 5.2. Define the poinisz,, . . . inductively so thatl(z;, z;41) = min{1, 1 dist(z;, 0V}
and
u(zjy1) — u(z;))

; J=0,1,2,...;
d(zj, xj+1)

S’j (xjv d(xj’ xj-i-l)) =

such points exist because the “sphergs” d(x;, z) = r} are all non-empty (a consequence of the fact fias
a length space) and compact (a consequence of the assumptighithptoper). By Lemma 5.7,

S (@jq1, d(2jq1, 542)) > Sy (25, d(x5, 2541)),
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and thus
w(j1) —u(a;) = Sy (x,d(xj, 2541)) d(@j, 2j41)
> St (z0) d(zj, xj41) = Lipu(ao) d(wj, xj41).
Summing up these inequalities gives

m—1

w(@y) — ( zjt1) — u(z )) > Lipu(zo) Z d(zj,zj41) for anym € N.
=0

SinceLip u(zo) > 0 andu(z,,) — u(zo) < 2sup,cy u(z) < oo, the sequencer;) is a Cauchy sequence, and
thus it converges to a point, € V. In fact, asd(z;, z;41) = min{1, 1 dist(z;, 9V}, we must have:o, € OV
Moreover, by the continuity of,, we have

w(Too) — u(xo) > Lip u(zo) Zd Tj, Tjt1) | - (5.2)
Next we sety, = z, and choose the poinis, y», ... inductively so thatl(y;, y;+1) = min{1, % dist(y;,0V'}
and
_ u(Y; —u(y; .
Su (yj7d(yj7yj+1)): Ma J 2071727

d(yj, Yj+1)
As above, using Lemmas 5.6 and 5.7 we find € 9V such that

w(Yoo) — u(zo) < — Lipu(zo) Zd Y Yj+1) | - (5.3)

By combining (5.2) and (5.3) we obtain

u(xoo) _u(yoo) > Llp“ IO Zd Lj, Tj+1 +Zd ijy]+1
On the other hand, as in the proof of estimate (5.1) in Lemma 5.4,

v(zj41) — v(z;) < (Sup Lipv(x)> d(z;,2;41)

zeV

and

v(yya1) — () < (228 Lipv(w)) Aoy 1),

for all j, and therefore

zeV

v(xm>v<yw>_(supL1pv ) S dlag i) + 3 dlyg )
7=0 7=0

SinceLip u(zg) > sup,cy Lip v(z), this implies that () — v(¥o) < u(Zoo) — ©(Yss ), Which is impossible
because: ., yo, € OV andu = v ondV. O
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