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E-mail: peanju@maths.jyu.fi
Department of Mathematical Sciences, P.O.Box 210025, University of Cincinnati, Cincinnati, OH 45221–0025, U.S.A.
E-mail: nages@math.uc.edu

Received for example 15 May 2004, revised xxxx , accepted yyyyy
Published online aaaaaa

Key words p-harmonic function, infinity-harmonic, absolutely minimizing Lipschitz extensions, comparison
with cones, length space.
MSC (2000) Primary: 31C35; Secondary: 31C45, 30C65.

In this paper, we study the relationship betweenp-harmonic functions and absolutely minimizing Lipschitz
extensions in the setting of a metric measure space(X, d, µ). In particular, we show that limits ofp-harmonic
functions (asp →∞) are necessarily the∞-energy minimizers among the class of all Lipschitz functions with
the same boundary data. Our research is motivated by the observation that while thep-harmonic functions in
general depend on the underlying measureµ, in many cases their asymptotic limit asp → ∞ turns out have a
characterization that is independent of the measure.
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1 Introduction

Let Ω ⊂ Rn be a bounded domain andf : ∂Ω → R a given Lipschitz continuous function. A well-known
theorem due to Bhattacharya, DiBenedetto and Manfredi [5], suggested earlier in the work of Aronsson [2],
states that the sequence(up) of the uniquep-harmonic extensions off to Ω, that is,up ∈ W 1,p(Ω) ∩ C(Ω)
satisfyingup = f on∂Ω with

∫

Ω

|∇up|p dx ≤
∫

Ω

|∇v|p dx for all v such thatu− v ∈ W 1,p
0 (Ω),

converges asp →∞ to a functionu∞ ∈ W 1,∞(Ω) ∩ C(Ω) that satisfies

ess sup
x∈V

|∇u∞(x)| ≤ ess sup
x∈V

|∇v(x)| (1.1)

wheneverV ⊂ Ω is open andv ∈ W 1,∞(V ) is such thatu∞ = v on ∂V . Such functions are necessarily
∞-energy minimizers among the class of all Lipschitz functions with the same boundary data. In the literature,
functions that satisfy (1.1) are usually calledabsolutely minimizing Lipschitz extensions(AMLEs for short). The
name refers to the fact that a function satisfies (1.1) if and only if it is an optimal Lipschitz extension off to Ω in
the sense that

Lip(u∞, V ) ≤ Lip(v, V ) wheneverV ⊂ Ω andu∞ = v on∂V . (1.2)

The equivalence of (1.1) and (1.2), which is not at all trivial (see [3]), shows, in particular, that while the definition
of p-harmonic functions clearly depends on the measure used in integration (above then-dimensional Lebesgue
measure), the limit functionu∞ can be characterized without this measure. This observation raises many natural

∗ N. S. was partially supported by NSF grant DMS-0355027.

Copyright line will be provided by the publisher



2 Petri Juutinen and Nageswari Shanmugalingam : AMLEs in metric measure spaces

questions. What happens if we replace the Lebesgue measure by another measureµ in the definition ofp-
harmonic functions? Do thep-harmonic extensions (if there are any) then converge to some function asp →∞;
and if so, is the limit function the same as in the case of the Lebesgue measure? Or more generally, if we are
given two measuresµ1 andµ2, what conditions ensure that the asymptotic limits of their associatedp-harmonic
extensions coincide?

The objective of this paper is to investigate these questions in the setting of a metric measure space(X, d, µ).
Under suitable assumptions on the space, there is a relatively well-developed theory of bothp-harmonic exten-
sions and AMLEs in this generality (see [23], [15], [21], [7]), and thus there is no need to restrict the attention
to the special case ofRn. The abstract setting makes it easier to identify the properties of the space and measure
relevant to our study, and also gives more flexibility when we need to construct counterexamples. As a first step,
we will show that, under certain natural assumptions, thep-harmonic functions converge, asp → ∞, to a limit
function that satisfies a metric space version of (1.1). In general, the limit ofp-harmonic functions is not even
Lipschitz continuous, nor does its Lipschitz continuity guarantee that it would satisfy the condition (1.2). In
order to establish that a limit function for which (1.1) holds also satisfies (1.2), we need to assume that the space
(X, d, µ) has a “weak Fubini property”; this is used to show, roughly speaking, that sets of measure zero can be
neglected when computing the Lipschitz constant of a function, a fact that is not true in general. The proof of the
equivalence of (1.1) and (1.2) is rather involved, and as in [3], it is done with aid of an auxiliary concept called
“comparison with cones” introduced in [9]. Let us also mention that while, in viewing (1.1), it might seem that
the asymptotic limits of thep-harmonic extensions associated to the measuresµ1 andµ2 coincide if the measures
are mutually absolutely continuous, this is not always the case; we give a counterexample in Section 3.

The paper is organized as follows. In Section 2, we state the metric space versions of conditions (1.1) and
(1.2), and give some remarks concerning their relationship. Note that in order to generalize (1.1), we have to find
an appropriate substitute for the modulus of the gradient|∇u|. It turns out that the local Lipschitz constant will
do quite well for this purpose since in the case of Lipschitz functions it coincides with the minimalp-weak upper
gradient that appears in the definition thep-harmonic functions in the metric setting. Section 3 contains a proof
for the convergence ofp-harmonic functions to a function satisfying (1.1) in the case when(X, d, µ) is a complete
length space supporting an appropriate Poincaré inequality and the measureµ is doubling. The comparison with
cones -property (which is also defined in Section 2 below) is shown in Section 4 to be equivalent to (1.2) in any
length space. A much harder task is to show that (1.1) is also equivalent to comparison with cones. This is done
in Section 5 under the key assumption of the weak Fubini property.

There is nowadays a vast literature on AMLEs and associated problems inRn, especially on the closely related
topic of the infinity Laplace equation. We refer the reader to the paper [3], which contains an extensive list of
references on the subject. The closely related issue of the dependence of the asymptotic limit ofp-harmonic
functions on the metricd has been considered e.g. in [3], [24], and [4].

2 Definitions

We assume that(X, d, µ) is a metric measure space such that the measureµ is Borel regular, non-empty open
sets have positive measure and bounded sets have finite measure.

Given a setA ⊂ X and a Lipschitz functionf onA, we define the global Lipschitz constant to be the number

Lip(f, A) := sup
x,y∈A,y 6=x

|f(x)− f(y)|
d(x, y)

,

and the local Lipschitz constant to be the functionLip f defined onA by

Lip f(x) := lim
r→0+

sup
y∈B(x,r)\{x}

|f(x)− f(y)|
d(x, y)

.

Let Ω ⊂ X be a bounded domain andf : Ω → R be a Lipschitz function. Using the global and local Lipschitz
constants, we define the metric space versions of conditions (1.1) and (1.2) of the introduction.

Definition 2.1 A function u ∈ C(Ω) is said to be anabsolutely minimizing Lipschitz extensionof f in Ω,
abbreviated AMLEf (Ω), if u = f on∂Ω and for all subdomainsU ⊂ Ω,

Lip(u,U) = Lip(u, ∂U).
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Notice that this definition is equivalent to (1.2) inRn because

Lip(v, U) = Lip(v, U) ≥ Lip(v, ∂U)

for any Lipschitz function. Furthermore, the McShane-Whitney extensionsΛu, Υu of u from ∂U to U satisfy
Lip(Λu, U) = Lip(Υu, U) = Lip(u, ∂U).

Definition 2.2 A function u ∈ C(Ω) is said to be anstrongly absolutely minimizing Lipschitz extensionof f
in Ω, abbreviated st-AMLEf (Ω), if u = f on∂Ω and in addition, for all subdomainsU ⊂ Ω and for all functions
v ∈ Lip(U) with u = v on∂U the following inequality holds true:

µ-ess sup
x∈U

Lipu(x) ≤ µ-ess sup
x∈U

Lip v(x).

If X = Rn, equipped with the usual Euclidean distance, andµ is the Lebesgue measure, thenLipu(x) =
|∇u(x)| at every point of differentiability. Thus in this special case,

µ-ess sup
x∈U

Lipu(x) = ess sup
x∈U

|∇u(x)|

for all Lipschitz functions by the Rademacher theorem, and hence Definition 2.2 is a natural generalization of
(1.1). The descriptor “strongly” is reminiscent of the Euclidean case [3], where the inclusion st-AMLEf (Ω) ⊂
AMLEf (Ω) is relatively easy to establish, while the reverse inclusion AMLEf (Ω) ⊂ st-AMLEf (Ω) is more
difficult. Note, however, that the inclusion st-AMLEf (Ω) ⊂ AMLEf (Ω) does not always hold in the setting of
metric spaces, see Example 5.3.

We will prove, under suitable conditions, that the classes AMLEf (Ω) and st-AMLEf (Ω) coincide by using an
intermediate concept of comparison with cones, which we define next. To this end, givena, b ∈ R andx0 ∈ X,
let us denote byCa,b,x0 the “cone function” onX defined by

Ca,b,x0(x) := b + a d(x, x0).

The motivation for considering the cone functions comes from the fact that the McShane-Whitney extensions
Λu, Υu of u from ∂U to U are given by

Υu(x) = inf{Ca,b,y(x) : y ∈ ∂U, b = u(y), anda = Lip(u, ∂U) }

and

Λu(x) = sup{Ca,b,y(x) : y ∈ ∂U, b = u(y), anda = −Lip(u, ∂U) }.

Definition 2.3 A functionu ∈ C(Ω) is said to satisfy the property ofcomparison with conesin Ω, abbreviated
CC(Ω), if the following two conditions hold:

1. For all subdomainsU ⊂ Ω and for alla ≥ 0, all b ∈ R, and allz0 ∈ X \ U , we haveu ≤ Ca,b,z0 on U
wheneveru ≤ Ca,b,z0 on∂U .

2. For all subdomainsU ⊂ Ω and for alla ≥ 0, all b ∈ R, and allz0 ∈ X \ U , we haveu ≥ C−a,b,z0 on U
wheneveru ≥ C−a,b,z0 on∂U .

The concept of comparison with cones was originally introduced in [9], where it was used to study the regular-
ity properties of AMLEs inRn. See also [3] and the references therein. Its adaptation to the metric space setting
is quite straightforward, and only the sign restrictiona ≥ 0 needs some thought, cf. [7]. Indeed, with some addi-
tional assumptions on the metric space one can get rid of the requirementa ≥ 0 in the above definition. For exam-
ple, if X has the property that for all non-empty bounded open subsetsU of X with non-empty boundary and for
all pointsx0 ∈ X \U there exists a pointx1 ∈ ∂U and a pointz ∈ U so thatd(x0, z)+d(z, x1) = d(z0, x1), then
we can remove the restrictiona ≥ 0 in the above definition. To see this, suppose thatu satisfies the comparison
with cones property in a domainΩ, and suppose thatU ⊂ Ω is a subdomain such thatu ≤ Ca,b,z0 on∂U for some
a < 0 andz0 ∈ X \ U . Note that ifW = {x ∈ U : u(x) > Ca,b,z0(x)} is nonempty, thenu = Ca,b,z0 on∂W .
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By the above assumption, we findx1 ∈ ∂W and a pointz ∈ W so thatd(z0, z) + d(z, x1) = d(z0, x1). It can be
verified via the triangle inequality thatC−a,b+ad(z0,x1),z0 ≥ Ca,b,z0 . Since−a > 0 andu ≤ C−a,b+ad(z0,x1),z0

on ∂W , we see thatu ≤ C−a,b+ad(z0,x1),z0 on W . However, asd(z0, z) + d(z, x1) = d(z0, x1) and hence
u(z) > Ca,b,z0(z) = C−a,b+ad(z0,x1),z0(z), we have a contradiction; thus,W is empty. Metric spaces whose
every geodesic line segment is extendable to a bi-infinite geodesic line have the above property.

Propositions 4.1, 5.5 and 5.8 together demonstrate that in a proper length space that has the weak Fubini
property, a function is a strongly absolutely minimizing Lipschitz extension if and only if it is an absolutely
minimizing Lipschitz extension. If the measure in addition is doubling and supports a Poincaré inequality (see
below), then Theorem 3.1 demonstrates the existence of such extensions. To prove the existence of st-AMLEf (Ω)
functions, we usep-harmonic functions associated with the measureµ as follows.

Given an open setU ⊂ X and a functionf : U → R, we say that a non-negative Borel measurable functionρ
onU is anupper gradientof f if for all compact rectifiable curvesγ in U the following inequality is satisfied:

|f(x)− f(y)| ≤
∫

γ

ρ ds, (2.1)

wherex andy denote the two endpoints ofγ. If either of|f(x)|, |f(y)| is infinite, the right-hand side of the above
inequality is also required to be infinite. It can be shown that iff is a Lipschitz function onU , thenLip f is an
upper gradient off .

For now let us fix an indexp with 1 < p < ∞. We say that a family of non-constant compact rectifiable curves
in U is of zerop-modulus if there is a non-negative Borel measurable functiong on U such thatg ∈ Lp(U) and
for all curvesγ in this family the path integral

∫
γ

g ds is infinite. If the collection of non-constant compact
rectifiable curves for which the inequality (2.1) fails is a zerop-modulus family of curves, then the functionρ
is said to be ap-weak upper gradientof f . The uniform convexity ofLp(U), together with the fact that the
collection of allp-weak upper gradients off in Lp(U) forms a closed convex subset ofLp(U), implies that if
this convex subset is non-empty then there is ap-weak upper gradientρf of f in Lp(U), uniquely determined up
to sets ofµ-measure zero, so that‖ρf‖Lp(U) ≤ ‖ρ‖Lp(U) for all p-weak upper gradientsρ of f . Furthermore,
this minimalp-weak upper gradienthas the property thatρf ≤ ρ µ-a.e. inU wheneverρ ∈ Lp(U) is ap-weak
upper gradient off .

A metric measure space is said to support a(1, p)-Poincaŕe inequality if there exist constantsC > 0 andτ ≥ 1
such that for all functionsf : X → R, for all p-weak upper gradientsρ ∈ Lp

loc(X) of f , and for all ballsB ⊂ X,

inf
c∈R

∫

B

|u− c| dµ ≤ C rad(B)




∫

τB

ρp dµ




1/p

.

For more on upper gradients and Poincaré inequality see [14], [22], [20], [8], and the references therein.
The collection of all functionsf ∈ Lp(X) that have ap-weak upper gradientρ ∈ Lp(X) is called the Newton-

Sobolev classN1,p(X); see [22] for more on this class. Under the above conditions it is known that functions
in the Newton-Sobolev class satisfy versions of the Sobolev embedding theorems; see for example [11] or [22].
Given a setE ⊂ X and1 ≤ p < ∞, thep-capacity ofE is the number

Capp(E) := inf
u

(
‖u‖p

Lp(X) + inf
ρ
‖ρ‖p

Lp(X)

)
,

where the infimum is taken over all functionsu ∈ N1,p(X) with u ≥ 1 onE, and over allp-weak upper gradients
ρ of u. For more on the definition and properties ofp-capacity, we refer the reader to [18], [19], [17], and [23].

We say that the measureµ is doublingif there exists a constantC ≥ 1 such that wheneverx ∈ X andr > 0,
we have

µ(B(x, 2r)) ≤ C µ(B(x, r)).

It was shown in [8] that whenever the measureµ is doubling and supports a(1, p)-Poincaŕe inequality,Lip f is
the minimalp-weak upper gradient of any locally Lipschitz functionf .
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Throughout the rest of this paper, letΩ ⊂ X be a bounded domain with Capp(X \Ω) > 0 for sufficiently large
p ≥ 1; it should be noted here that Capp(X \Ω) > 0 for sufficiently largep ≥ 1 if and only if Capq(X \Ω) > 0
for some finiteq ≥ 1. Furthermore, ifµ(X \ Ω) > 0 then necessarily Capp(X \ Ω) > 0 for all finite p ≥ 1.

Given a bounded domainΩ ⊂ X such thatX \Ω has positivep-capacity and a functionf : X → R such that
f ∈ Lp(X) andf has ap-weak upper gradient inLp(X), we say that a functionu : Ω → R is ap-harmonic
function onΩ with boundary dataf if the following two conditions hold:

1. the zero extension ofu− f is in N1,p(X),

2. wheneverv : Ω → R also has the property that the zero extension ofv − f is in the classN1,p(X), then

∫

Ω

ρp
u dµ ≤

∫

Ω

ρp
v dµ.

We will show that ifµ is doubling and supports a(1, p0)-Poincaŕe inequality for some1 ≤ p0 < ∞, then the
p-harmonic extensions of a Lipschitz boundary functionf converge to a strongly absolutely minimizing Lipschitz
extension off asp →∞. Moreover, if(X, d, µ) is a proper length space satisfying a weak Fubini property (see
Section 5), thenu is a strongly absolutely minimizing Lipschitz extension off if and only if u is an AMLEf (Ω).
In particular, in that class of metric measure spaces, the properties of such limits ofp-harmonic extensions are
independent ofµ. In general metric spaces, the class ofp-harmonic functions changes as the underlying measure
changes; in particular, the notion of minimalp-weak upper gradient changes with both the measure onX and the
indexp, as illustrated in the example below. However, it is a deep theorem of Cheeger that if the metric space
is a length space (a property that is independent of the measureµ imposed onX), then amongst the class of all
doubling Borel regular measuresµ with respect to which the metric space supports a(1, p0)-Poincaŕe inequality,
the minimalp-weak upper gradient of a locally Lipschitz functionf onX (the Lipschitz property of a function is
again merely a property of the metric and does not depend on the measureµ) is the local Lipschitz constantLip f
wheneverp ≥ p0; hence the functions obtained as limits ofp-harmonic functions (with respect to such measures
µ) exhibit properties that are independent of the measureµ. The first example below illustrates this property.
The second example below demonstrates that when the metric measure space supports no Poincaré inequality the
results obtained in this paper fail.

Example 2.4 As in the book [13], we may consider theweightedp-Laplacianequation

−div(w(x) |∇u(x)|p−2∇u(x)) = 0 (2.2)

on a domain inRn. Solutions to (2.2) arep-harmonic on the domain in the metric measure space obtained by
looking at the Euclidean spaceRn endowed with the Euclidean metric, but with the measureµ given by

dµ(x) = w(x) dωn(x),

whereωn is the canonical Lebesgue measure onRn. Shouldw be ap-admissible weight in the sense of [13] (see
Section 1.1 of [13]), then we always have solutions to (2.2). In order to consider explicit solutions, let us consider
more explicitp-admissible weights. Givenβ > 0, consider the weight functionw given by

w(x) = |x|2β .

From the discussion preceding Theorem 1.8 of [13], it is clear that this is ap-admissible weight for allp > 1.
Let Ω be the punctured unit ball inRn centered at the origin:Ω = B(0, 1) \ {0}, and forp > n we consider
the boundary data forΩ given byf : Rn → R with f(x) = max{0, 1 − dist(x, S(0, 1))} (whereS(0, 1) is the
unit sphere inRn centered at the origin0). It can be seen by the use of Hölder’s inequality together with a polar
coordinate integration that the set{0} is a set of positivep-capacity whenp > n+2β. A basic calculation shows
that the solution to (2.2) inΩ with the Lipschitz boundary dataf is given by

up(x) = |x|α whereα =
p− 2β − n

p− 1
.

Copyright line will be provided by the publisher



6 Petri Juutinen and Nageswari Shanmugalingam : AMLEs in metric measure spaces

Note thatup depends on the measureµ via the exponentβ, but asp →∞ we haveup → u∞, where

u∞(x) = |x|

is clearly independent ofµ.

Example 2.5 Let X be the metric space obtained by imposing the Euclidean metric on the set

X := {z ∈ C : |Arg(z)| ≤ π/4 or |Arg(−z)| ≤ π/4}.

We may consider two measuresµ1 andµ2 onX as follows. Letµ1 denote the standard two-dimensional Lebesgue
measure onX, andµ2 is given bydµ2(z) = e−1/|z|2dµ1(z). Then the collection of all non-constant curves
passing through the origin has positivep-modulus with respect to the measureµ1 wheneverp > 2, but has zero
p-modulus forall p with respect to the measureµ2. Observe that these two measures are absolutely continuous
with respect to each other. However, forp > 2 the metric measure space(X, d, µ1) is a doubling measure space
supporting a(1, p)-Poincaŕe inequality, whereas the metric measure space(X, d, µ2) never supports a Poincaré
inequality. If we consider the domainΩ ⊂ X given byΩ := {z ∈ X : |z| < 1}, the boundary ofΩ consists of
two disjoint circular arcs separated by a distance

√
2. If we consider the boundary function obtained by setting

the functionf to take on the value of1 on one of the two arcs and0 on the other arc, thep-harmonic extension
up to Ω with respect the measureµ2 is given byup(z) = 1 if z lies in the quarter-disc whose boundary is the
arc on which the data is1, andup(z) = 0 otherwise. The limit of theseup functions, asp → ∞, yields the
same function which is not even locally Lipschitz continuous. On the other hand, thep-harmonic extensionsvp

obtained with respect to the measureµ1 yield a Lipschitz function as a limit asp → ∞; this limit function is
necessarily of the class st-AMLEf (Ω), though the limit of the functionsup is never a member of this class.

3 Existence of st-AMLEf (Ω)

In this section we will prove the existence of st-AMLEf (Ω) under the following additional assumptions. We will
assume thatX is a complete length space (that is, the distance between each pair of pointsx, y ∈ X is given
by d(x, y) = infγ `(γ), where`(γ) denotes the length of the curveγ and the infimum is taken over all compact
rectifiable curvesγ in X with end-pointsx andy) and that the measureµ is doubling. We will also assume that
(X, d, µ) supports a(1, p0)-Poincaŕe inequality for some1 ≤ p0 < ∞. Under the assumption of the doubling
property of the measureµ it is known that there existsQ > 0 such that wheneverx ∈ X, 0 < r < R, and
y ∈ B(x,R),

( r

R

)Q

µ(B(x,R)) ≤ C µ(B(y, r)).

If p > Q, then functionsf in the Newton-Sobolev classN1,p(X) satisfy the following inequality for all pairs of
pointsx, y ∈ X:

|f(x)− f(y)| ≤ C


∑

j∈N
2−j(1−Q/p)


 ‖ρf‖Lp(X) d(x, y)1−Q/p. (3.1)

The important point here is that the constantC is independent ofx, y, f , and is also independent ofp (but it
depends on the doubling constant and the(1, p0)-Poincaŕe inequality constant, withp0 ≤ p). Hereρf ∈ Lp(X)
denotes the minimalp-weak upper gradient off . It should be mentioned that the results from the paper [8] show
that if f is a Lipschitz function, thenρf = Lip f µ-almost everywhere (here we use the fact that as a complete
doubling length spaceX is a geodesic space).

It was shown in [23] that under the hypotheses considered in this section, for every functionf ∈ N1,p(X)
there is a functionu ∈ N1,p(X) such thatu = f onX \ Ω and wheneverv ∈ N1,p(X) is another function such
thatv = f onX \ Ω,

∫

Ω

ρp
u dµ ≤

∫

Ω

ρp
v dµ.
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Suchp-energy minimizing functions are calledp-harmonic extensionsof f to Ω. It was also shown in [23] that
suchp-harmonic functions satisfy the comparison property: Iff, h are two functions from the classN1,p(X)
such thatf ≥ h on∂Ω, then theirp-harmonic extensionsuf anduh satisfy the inequalityuf ≥ uh onΩ.

Theorem 3.1 Suppose that(X, d, µ) is a complete length space. Under the assumptions that the measure
µ is doubling and supports a(1, p0)-Poincaŕe inequality, for every Lipschitz functionf on ∂Ω there exists a
st-AMLEf (Ω)-extension.

P r o o f. Without loss of generality we may assume thatf is a Lipschitz function onX with bounded support
(by extendingf to all of X by a McShane extension and then damping downf by a Lipschitz function which is
identically1 on a bounded neighborhood ofΩ and vanishes outside a larger bounded neighborhood). For each
p > max{p0, Q} let up denote thep-harmonic extension off to Ω as above. Then by inequality (3.1) and by the
fact that

‖ρup‖p
Lp(X) =

∫

X\Ω
ρp

f dµ +
∫

Ω

ρp
up

dµ ≤
∫

X\Ω
ρp

f dµ +
∫

Ω

ρp
f dµ =

∫

X

(Lip f)p dµ,

we see that the family{up : p ≥ q} is an equibounded and equicontinuous family onX for every q >
max{p0, Q}, and asX is complete, by the Arzela-Ascoli theorem it is a normal family, yielding a subsequence
(upk

)k that converges locally uniformly inX to a function that is1 − Q/q-Hölder continuous. By a Cantor
diagonalization argument we can extract a subsequence, also denoted(upk

)k, so that the limit functionu∞ is
Lipschitz continuous andlimk pk = ∞.

Let v ∈ N1,p(X) be another continuous function onX such thatv = f on∂Ω and locally Lipschitz continu-
ous onΩ. Sinceupk

is thepk-harmonic extension off to Ω, we have
∫

Ω

ρpk
upk

dµ ≤
∫

Ω

ρpk
v dµ,

and hence



∫

Ω

ρpk
upk

dµ




1/pk

≤



∫

Ω

ρpk
v dµ




1/pk

=




∫

Ω

Lip vpk dµ




1/pk

≤ µ-ess sup
x∈Ω

Lip v(x).

Thus, by Ḧolder inequality, wheneverk ≥ k0,




∫

Ω

ρ
pk0
upk

dµ




1/pk0

≤ µ-ess sup
x∈Ω

Lip v(x).

Now arguing as in the proof of Lemma 3.1 of [17], we may conclude thatu∞ ∈ N1,p(X) with apk0-weak upper
gradientρ satisfying the inequality




∫

Ω

ρpk0 dµ




1/pk0

≤ µ-ess sup
x∈Ω

Lip v(x),

and hence asLipu∞ is the minimalpk0-weak upper gradient ofu∞, we see that




∫

Ω

Lipu
pk0∞ dµ




1/pk0

≤ µ-ess sup
x∈Ω

Lip v(x).

Next lettingk0 →∞, we see that

µ-ess sup
x∈Ω

Lipu∞(x) ≤ µ-ess sup
x∈Ω

Lip v(x). (3.2)
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8 Petri Juutinen and Nageswari Shanmugalingam : AMLEs in metric measure spaces

It is also clear thatu∞ = f onX \ Ω, and in particular,u∞ = f on∂Ω.
It now only remains to prove that for all subdomainsU ⊂ Ω and for all functionsv ∈ Lip(U) with u∞ = v

on∂U the following inequality holds true:

µ-ess sup
x∈U

Lipu∞(x) ≤ µ-ess sup
x∈U

Lip v(x).

To prove this, fix a subdomainU ⊂ Ω, and for eachpk we find thepk-harmonic extensionvpk
of u∞ to U , and as

before obtain a locally uniform convergence of these functions to a functionv∞ such that wheneverv ∈ Lip(U)
with v = v∞ = u∞ on∂U , as in inequality (3.2) we get

µ-ess sup
x∈U

Lip v∞(x) ≤ µ-ess sup
x∈U

Lip v(x).

Hence it suffices to show thatv∞ = u∞. To do so, it is important to note that the sequence(pk)k was a
subsequence of the sequence used to constructu∞.

Sinceupk
→ u∞ uniformly onU ⊂ Ω (which is a compact set asX is a complete doubling space and hence is

proper), we see that for allε > 0 there is a positive integerkε such that‖upk
−u∞‖L∞(∂U) ≤ ε wheneverk ≥ kε;

that is,u∞ − ε ≤ upk
≤ u∞ + ε on∂U . Hence by the comparison theorem, we havevpk

− ε ≤ upk
≤ vpk

+ ε
onU wheneverk ≥ kε. Lettingk →∞ yields

v∞ − ε ≤ u∞ ≤ v∞ + ε

onU . Lettingε → 0 now yields the desired result, completing the proof of the theorem.

If X is not a length space, we will have to replace the condition

µ-ess sup
x∈U

Lipu(x) ≤ µ-ess sup
x∈U

Lip v(x)

with

µ-ess sup
x∈U

ρu(x) ≤ µ-ess sup
x∈U

ρv(x)

in the definition of st-AMLEf (Ω) in order for the above proof to work. Note that by the results of [8], we have
ρu ≈ Lip u if u is a local Lipschitz function.

As Example 2.5 demonstrates, without the additional assumptions of the doubling property and the support
of (1, p)-Poincaŕe inequality, the limit ofp-harmonic functions, asp → ∞, may not yield a function of the
class st-AMLEf (Ω) (even though the measureµ2 considered in that example is mutually absolutely continuous
with a “nice” measureµ1). The limit function obtained in that example was not even locally Lipschitz; for an
example where the limit function is also Lipschitz but fails to be of class AMLEf (Ω), see the example discussed
in Example 5.3 below.

The existence of AMLEf (Ω) can be obtained in any length space (without any assumptions on the measure
µ) by using a variant of the classical Perron’s method. See [21], [15], [16] for details.

4 Equivalence ofCC(Ω) and AMLE u(Ω)

Proposition 4.1 SupposeX is a length space. Then a functionu is of classCC(Ω) if and only if it is of class
AMLEu(Ω).

P r o o f. First suppose thatu is of classCC(Ω), and fix U ⊂ Ω. Let x, y ∈ U . We will first show that
Lip(u, ∂(U \ {x})) = Lip(u, ∂U). To do so, fixz0 ∈ ∂U , and leta = Lip(u, ∂U), b = u(z0). Thena ≥ 0,
and asu is a-Lipschitz on∂U , we see that for ally ∈ ∂U we have|u(y) − u(z0)| ≤ a d(y, z0); that is,
C−a,b,z0 ≤ u ≤ Ca,b,z0 on ∂U . Hence asu is of classCC(Ω), we see thatC−a,b,z0 ≤ u ≤ Ca,b,z0 on U . In
particular, asx ∈ U ,

u(z0)− Lip(u, ∂U) d(x, z0) ≤ u(x) ≤ u(z0) + Lip(u, ∂U) d(x, z0).
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Sincez0 ∈ ∂U was arbitrary, we have that for allz0 ∈ ∂U ,

|u(x)− u(z0)| ≤ Lip(u, ∂U) d(x, z0),

that is, u is Lip(u, ∂U)-Lipschitz on∂U ∪ {x} = ∂(U \ {x}); hence the equalityLip(u, ∂(U \ {x})) =
Lip(u, ∂U) follows. Repeating this process for the setU \ {x} with respect to the pointy, we also see that

Lip(u, ∂(U \ {x, y})) = Lip(u, ∂U),

that is,|u(x)− u(y)| ≤ Lip(u, ∂U) d(x, y). Sincex, y ∈ U were arbitrary, we obtainLip(u, U) = Lip(u, ∂U),
in other words,u is of class AMLEu(Ω).

To complete the proof, we now show that functions of class AMLEu(Ω) are also of classCC(Ω). We prove
this by contradiction. Supposeu is a function of class AMLEu(Ω) but not of classCC(Ω); therefore, there exists
a subdomainU ⊂ Ω anda ≥ 0, b ∈ R, and a pointz0 ∈ X \ U , such that either

1. u ≤ Ca,b,z0 on∂U but it is not true thatu ≤ Ca,b,z0 onU , or

2. u ≥ C−a,b,z0 on∂U but it is not true thatu ≥ C−a,b,z0 onU .

Since−u is of classCC(Ω) wheneveru is also of classCC(Ω), without loss of generality we may assume that
the first case above occurs; that is, the set

W := {x ∈ U : u(x) > Ca,b,z0(x)}
is non-empty. Since the two functions,u andCa,b,z0 , are continuous, thereforeW is a non-empty open subset of
U , with u = Ca,b,z0 on∂W . We fix a pointx ∈ W . Sinceu = Ca,b,z0 on∂W , we see thatLip(u, ∂W ) ≤ a. As
u is of class AMLEu(Ω), we therefore haveLip(u,W ) ≤ a (we may replaceW with a connected component of
W containingx here). On the other hand, asX is a length space, for everyε > 0 we can find a curveγε in X
joining x andz0 such that it’s length̀(γε) ≤ (1 + ε)d(x, z0). Sincex ∈ W andz0 6∈ W , the curveγε must cross
∂W ; let yε be such a point. Letγε,1 andγε,2 denote the two subcurves ofγε joining x to yε and joiningyε to z0

respectively. Then

`(γε) ≥ `(γε,1) + `(γε,2) ≥ d(x, yε) + d(yε, z0).

By the definition ofW , asx ∈ W , we see that there is a positive real numberδ > 0 such that

u(x) ≥ Ca,b,z0(x) + δ = b + a d(x, z0) + δ ≥ b + a[(1 + ε)−1`(γε)] + δ.

We choose0 < ε < 1, so that(1 + ε)−1 ≥ 1− ε > 0. Thus,

u(x) ≥ b + a(1− ε)[d(x, yε) + d(yε, z0)] + δ

≥ b + a d(yε, z0) + a(1− ε)d(x, yε)− aεd(yε, z0) + δ.

Sinceyε ∈ ∂W and henceu(yε) = Ca,b,z0(yε) = b + a d(yε, z0), we have

|u(x)− u(yε)|
d(x, yε)

≥ a(1− ε) +
δ − aεd(yε, z0)

d(x, yε)
.

SinceW is a bounded open set, we see that0 < d(x, yε) ≤ D := diam(W ) < ∞, andd(yε, z0) ≤ A :=
max{d(w, z0) : w ∈ W} < ∞. Therefore we may chooseε small enough so thatδ − aεA > δ/2, to obtain

|u(x)− u(yε)|
d(x, yε)

≥ a(1− ε) +
δ

2D
,

that is,

Lip(u,W ) = Lip(u,W ) ≥ a(1− ε) +
δ

2D
.

Letting ε → 0 yieldsLip(u,W ) ≥ a +
δ

2D
> a, a contradiction. Hence it is necessary thatu be of classCC(Ω)

as well, thus completing the proof.
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5 Equivalence ofCC(Ω) and st-AMLE u(Ω)

In this section again we assume that(X, d, µ) is a length space. It turns out that this assumption is insufficient to
prove that the classesCC(Ω) and st-AMLEu(Ω), and consequently, the classes AMLEu(Ω) and st-AMLEu(Ω),
are equivalent. We therefore need the following assumption in addition to the others above.

If Γ is a family of curves inX, and1 ≤ p < ∞, thep-modulusof Γ is the number

Modp(Γ) := inf
ρ
‖ρ‖p

Lp(X),

where the infimum is taken over all non-negative Borel measurable functionsρ on X such that for each curve
γ ∈ Γ the path integral

∫
γ

ρ ds ≥ 1. Ahlfors and Beurling first gave the concept of moduli of curve families
in the setting of planar domains in [1], (they termed this concept extremal length), and this concept was further
developed and axiomatized to a more general setting by Fuglede in [10]. It was shown in [20] that a familyΓ
is of zerop-modulus if and only if there is a non-negative Borel measurable functionρ on X with ρ ∈ Lp(X)
such that for eachγ ∈ Γ, the integral

∫
γ

ρ ds is infinite. It is also easy to see that the empty family has zero

p-modulus and that wheneverE ⊂ X is of zeroµ-measure, the collectionΓ+
E of all curvesγ in X for which

H1(|γ| ∩ E) > 0 is of zerop-modulus.

Definition 5.1 We say thatX has aweak Fubini propertyif there exist1 ≤ p < ∞ and two positive
constantsC, τ0 such that whenever0 < τ ≤ τ0 and B1 and B2 are two balls inX with dist(B1, B2) >
τ max{diam(B1), diam(B2)}, then ModpΓ(B1, B2, τ) > 0. HereΓ(B1, B2, τ) denotes the collection of all
compact rectifiable curvesγ in X joining B1 andB2 such that̀ (γ) ≤ dist(B1, B2) + Cτ .

The following key lemma demonstrates the importance of the above property.

Lemma 5.2 Let X be a length space that has the weak Fubini property andW be a non-empty open subset
of X. If u ∈ Lip(W ), thenµ-ess supx∈W Lipu(x) = supx∈W Lip u(x).

Example 5.3 For general metric measure spaces the conclusion of this lemma does not hold. Indeed, one can
obtain a counterexample by pasting a line segment to two disjoint closed triangular regions inR2 and using the
length metric and the restriction of the two-dimensional Lebesgue measure to this set. A non-constant function
that is constant on the two triangular regions but changes in a Lipschitz manner along the line segment will fail
to satisfy the above lemma. However, we do not know whether it is possible that the conclusion of the above
lemma holds true always if we assume that the measure of non-empty open sets are positive. Note that in the
above example functions that are constant on the closed triangular regions arep-harmonic for all1 < p < ∞,
and hence can yield as a limit (asp →∞) a function that is of class st-AMLEf (Ω), but not of class AMLEf (Ω).

P r o o f. Leta = µ-ess supx∈W Lip u(x). Clearlya ≤ supx∈W Lipu(x). Let E = {y ∈ W : Lip u(y) >

a}. It suffices to show thatE is empty. Note thatµ(E) = 0. Thus the familyΓ+
E of all curvesγ in X for

whichH1(|γ| ∩ E) > 0 is of zerop-modulus. Hence Modp(Γ(B1, B2, τ) \ Γ+
E) > 0 whenever ballsB1, B2

and numberτ satisfy the definition of weak Fubini property. It suffices to show that for everyx ∈ W there is
a neighborhood ofx in which u is a-Lipschitz continuous. SinceW is open, we may chooser > 0 for which
B(x, 10Cr) ⊂ W , whereC is from the definition of the weak Fubini property. Lety, z ∈ B(x, r), and for
0 < 2τ < min{1, τ0, d(y, z)}, chooseB1 = B(y, τ/2) andB2 = B(z, τ/2). ThenB1 ∪B2 ⊂ W , and

dist(B1, B2) ≥ d(y, z)− τ > 2τ − τ = τ,

with max{diam(B1), diam(B2)} ≤ τ ≤ 1. Therefore asX satisfies the weak Fubini property, we have
Modp(Γ(B1, B2, τ) \ Γ+

E) > 0, in particular,Γ(B1, B2, τ) \ Γ+
E 6= ∅. Let γτ be a curve from this family,

and letyτ , zτ be the endpoints ofγτ from B1 andB2 respectively. Then asH1(|γτ | ∩ E) = 0, we see that

|u(yτ )− u(zτ )| ≤
∫

γτ

Lipu ds ≤
∫

γτ

a ds = a `(γτ ) ≤ a [d(yτ , zτ ) + Cτ ].

As τ → 0 we see thatu(yτ ) → u(y), u(zτ ) → u(z), andd(yτ , zτ ) + Cτ → d(y, z). Hence,|u(y) −
u(z)| ≤ a d(y, z). Sincey, z ∈ B(x, r) was arbitrary, we see thatu is a-Lipschitz onB(x, r), and in particular,
Lip u(x) ≤ a, that is,x 6∈ E. ThusE is empty, completing the proof of the lemma.
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It should be noted here that the weak Fubini property does not by itself imply a(1, p)-Poincaŕe inequality.
Indeed, by joining countably many Euclidean balls of small diameter by tubes of fixed length whose diameter gets
narrower, we obtain a metric measure space (with length metric generated from the underlying Euclidean metric
and the natural Lebesgue measure) that has the weak Fubini property for any1 ≤ p < ∞ (precisely because
we can run a Fubini type decomposition of volume integrals on this space), but has no Poincaré inequality.
On the other hand, even a(1, 1)-Poincaŕe inequality is not sufficient to guarantee the weak Fubini property, as
demonstrated by then-dimensional unit sphere, equipped with the Euclidean metric and the(n− 1)-dimensional
Hausdorff measure; the obstacle here is that under the Euclidean metric the space is not a length space. In general,
the Poincaŕe inequalities only guarantee quasiconvexity. However, it would be interesting to know whether if
the space is a length space and non-empty open sets have positive measure, then the space has the weak Fubini
property or not. Examples of spaces exhibiting the weak Fubini property include Euclidean domains, Riemannian
manifolds, Carnot groups, and the metric spaces constructed by Bourdon and Pajot in [6]; the proof of this fact
essentially follows from the fact that in these spaces the measure admits a Fubini type decomposition.

Lemma 5.4 LetX be a length space andW 6= X be a non-empty open subset ofX. If u ∈ Lip(W ), then

Lip(u,W ) ≤ max{Lip(u, ∂W ), sup
x∈W

Lipu(x)}.

P r o o f. Letx, y ∈ W . SinceX is a length space, for every positive integern we can find a curveγn in X
joining x andy such that̀ (γn) ≤ d(x, y) + 1

n . If γn lies inW for sufficiently largen, then asLip u is an upper
gradient ofu (see for example [12]), we have

|u(x)− u(y)| ≤
∫

γn

Lip u ds ≤
(

sup
x∈W

Lip u(x)
)

`(γn),

and lettingn →∞ we see that

|u(x)− u(y)| ≤
(

sup
x∈W

Lip u(x)
)

d(x, y). (5.1)

If for all sufficiently large values ofn we haveγn leavingW , then for each suchn let zn andwn denote the first
timeγn leavesW and the last timeγn entersW , by breakingγn up into three pieces,γn,1, γn,2, andγn,3, where
γn,1 joins x andzn and lies inW except for the endpointzn, andγn,3 joins wn andy and lies inW except for
the endpointwn, and the subcurveγn,2 joins the two pointszn, wn ∈ ∂W . Therefore, as before we see that

|u(x)− u(y)| ≤ |u(x)− u(zn)|+ |u(zn)− u(wn)|+ |u(wn)− u(y)|

≤
(

sup
x∈W

Lip u(x)
)

[`(γn,1) + `(γn,3)] + Lip(u, ∂W ) d(zn, wn)

≤ max{Lip(u, ∂W ), sup
x∈W

Lip u(x)} [`(γn,1) + `(γn,3) + `(γn,2)]

≤ max{Lip(u, ∂W ), sup
x∈W

Lip u(x)} [d(x, y) + (1/n)].

Lettingn →∞ yields the desired inequality.

Proposition 5.5 If X satisfies the weak Fubini property, then every function of the class st-AMLEu(Ω) is of
classCC(Ω).

P r o o f. Supposeu is of class st-AMLEu(Ω) but not of classCC(Ω). Then as in the proof of Proposition 4.1,
we obtaina ≥ 0, b ∈ R, an open setW ⊂ Ω, and a pointz0 ∈ X \ W such thatu = Ca,b,z0 on ∂W but
u > Ca,b,z0 onW . Sinceu is of class st-AMLEu(Ω), we see that

µ-ess sup
x∈W

Lipu(x) ≤ µ-ess sup
x∈W

LipCa,b,z0(x) ≤ a.
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Thus, by Lemma 5.2, we havesupx∈W Lipu(x) ≤ a. In particular, by Lemma 5.4, we see thatLip(u,W ) ≤
max{Lip(Ca,b,z0 , ∂W ), a} ≤ a. But then, for allx ∈ W and ally ∈ ∂W we have|u(x) − u(y)| ≤ a d(x, y),
and therefore,

u(x) ≤ u(y) + a d(x, y) = Ca,b,z0(y) + a d(x, y) = b + a [d(y, z0) + d(x, y)].

Sincey ∈ ∂W was arbitrary, we see that

u(x) ≤ b + a inf
y∈∂W

[d(y, z0) + d(x, y)].

Now as in the proof of Proposition 4.1, for everyε > 0 we choose a curveγε joining x andz0 in the length space
X such that̀ (γε) ≤ (1 + ε) d(x, z0), and letyε ∈ ∂W be a point at which this curve intersects∂W . Thus,

u(x) ≤ b + a[d(yε, z0) + d(x, yε)] ≤ b + a `(γε) ≤ b + a(1 + ε)d(x, z0).

Lettingε → 0, we see thatu(x) ≤ b+a d(x, z0) = Ca,b,z0(x), that is,x 6∈ W , a contradiction. Therefore it must
be true thatu is of classCC(Ω).

The proof of the converse implication, that every function of the classCC(Ω) is of class st-AMLEu(Ω), is
slightly more complicated and requires some preparatory work. Let us first introduce some notation. Forx ∈ Ω
and0 < r < dist(x, ∂Ω), we define

S+
u (x, r) := sup

{z : d(z,x)=r}

(
u(z)− u(x)

r

)
, S−u (x, r) := inf

{z : d(z,x)=r}

(
u(z)− u(x)

r

)

and, if the limits exist,

S+
u (x) := lim

r→0+
S+

u (x, r), S−u (x) := lim
r→0+

S−u (x, r).

In the setting of general metric spaces, it is not always true that if0 < r < dist(x, ∂Ω) thenB(x, r) ⊂ Ω.
However, it should be noted that if the metric space is a length space then for allx ∈ Ω we havedist(x,X \Ω) =
dist(x, ∂Ω) and henceB(x, r) ⊂ Ω.

If u is of classCC(Ω), thenS+
u (x, r) is nonnegative and nondecreasing inr, andS−u (x, r) is nonpositive and

nonincreasing. In particular, in that caseS+
u (x) andS−u (x) are well-defined. To prove these facts, we first notice

that sinceu ≤ C0,M,x0 on∂B(x, r) for anyx0 ∈ X \B(x, r) andM = sup{u(z) : d(x, z) = r}, we have

u(x) ≤ sup
{z : d(z,x)=r}

u(z), that is, sup
{z : d(z,x)=r}

(
u(z)− u(x)

r

)
≥ 0.

ThusS+
u (x, r) ≥ 0. The monotonicity follows by comparingu to the coneCS+

u (x,r),u(x),x in the punctured ball
B(x, r) \ {x}; this yields

u(z) ≤ u(x) + S+
u (x, r) d(x, z) for all z ∈ B(x, r).

Hence

u(z)− u(x)
s

≤ S+
u (x, r) for all z such thatd(x, z) = s, 0 < s < r,

and we obtainS+
u (x, s) ≤ S+

u (x, r). The claims concerningS−u (x, r) follow by noticing thatu is of classCC(Ω)
if and only if−u is of classCC(Ω) and thatS−u (x, r) = −S+

−u(x, r).

Lemma 5.6 If u is of classCC(Ω), thenS+
u (x) = −S−u (x) = Lip u(x) for everyx ∈ Ω.
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P r o o f. First, by definition,

Lipu(x) = lim
r→0+

sup
y∈B(x,r)\{x}

|u(x)− u(y)|
d(x, y)

≥ lim sup
r→0+

sup
d(x,y)=r

(
u(y)− u(x)

r

)

= lim
r→0+

S+
u (x, r) = S+

u (x),

whenceLip u(x) ≥ S+
u (x). For the converse, we fixx ∈ Ω and for0 < r < 1

4 dist(x, ∂Ω) we consider a point
y ∈ Ω for which d(x, y) = r. Forn ∈ N, let γn be a path, parametrized by arc length, joiningx to y such that
`(γn) < d(x, y) + 1

n . Let In denote the interval which is the domain of the mapγn, and consider the function
gn : In → R given bygn(t) = u(γn(t)). Then

gn(t + h)− gn(t)
h

=
u(γn(t + h))− u(γn(t))

h

=
u(γn(t + h))− u(γn(t))

d(γn(t + h), γn(t))
d(γn(t + h), γn(t))

h

≤ S+
u (γn(t), d(γn(t + h), γn(t)))

d(γn(t + h), γn(t))
h

≤ S+
u (γn(t), d(γn(t + h), γn(t))),

where we used the fact that0 < d(γn(t+h), γn(t))/h ≤ 1. Therefore, we see thatg′n(t) ≤ S+
u (γn(t)) whenever

g′n(t) exists. Observe that asu is a Lipschitz function, so isgn; therefore, for almost everyt ∈ In we see that
g′n(t) exists and that

u(y)− u(x) =
∫

In

g′n(t) dt ≤
∫

In

S+
u (γn(t)) dt ≤

(
sup

z∈γn(In)

S+
u (z)

)
`(γn)

≤
(

sup
z∈γn(In)

S+
u (z)

) [
d(x, y) +

1
n

]
.

After lettingn →∞ we therefore have

Lipu(x) = lim
r→0+

sup
y∈B(x,r)\{x}

|u(x)− u(y)|
d(x, y)

≤ lim sup
r→0+

(
sup

z∈B(x,2r)

S+
u (z)

)
.

Next we recall thats 7→ S+
u (z, s) is nondecreasing and notice thatz 7→ S+

u (z, s) is continuous (becauseu itself
is even Lipschitz continuous). Thus

lim sup
r→0+

(
sup

z∈B(x,2r)

S+
u (z)

)
≤ lim sup

r→0+

(
sup

z∈B(x,2r)

S+
u (z, s)

)
= S+

u (x, s)

for anys > 0 small enough. This shows thatLip u(x) ≤ S+
u (x, s) for all s sufficiently small and consequently

Lip u(x) ≤ S+
u (x) by the definition ofS+

u (x).
We have thus far showed thatLipu(x) = S+

u (x) for everyx ∈ Ω. Sinceu is of classCC(Ω) if and only if
−u is of classCC(Ω), andS−u (x) = −S+

−u(x), we have

S−u (x) = −S+
−u(x) = −Lip(−u)(x) = −Lipu(x),

which completes the proof.

Lemma 5.7 Letu be of classCC(Ω), x0 ∈ Ω, and0 < r < dist(x0, ∂Ω). If x1 ∈ Ω is such thatd(x0, x1) =
r andu(x1) = supd(x0,z)=r u(z), then

S+
u (x0, r) ≤ S+

u (x1, s) for all 0 < s < dist(x0, ∂Ω)− r.
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P r o o f. Letγn be a path joiningx1 to x0, parametrized by arc length, such that`(γn) < r + 1
n . Since

u ≤ CS+
u (x0,r),u(x0),x0

on the boundary of the punctured ballB(x0, r) \ {x0}, we have

u(x) ≤ u(x0) + S+
u (x0, r)d(x0, x) for all x ∈ B(x0, r)

by the assumption thatu is of classCC(Ω). In particular,

u(γn(t)) ≤ u(x0) + S+
u (x0, r) d(x0, γn(t)) ≤ u(x0) + t

(
u(x1)− u(x0)

r

)

= u(x1) + (r − t)
(

u(x0)− u(x1)
r

)
= u(x1) + (r − t)

(−S+
u (x0, r)

)

for all t < r for which γn(t) ∈ B(x0, r). Here we used the fact thatγn is parametrized by arc length and the
assumptionS+

u (x0, r) = u(x1)−u(x0)
r . For sufficiently largen we see that the curveγn lies entirely inΩ. For

suchn we look at allt < r for whichγn(t) is in B(x0, r) ∩B(x1, dist(x1, Ω)); for sucht we have

S−u (x1, d(x1, γn(t))) = inf
d(x1,z)=d(x1,γn(t))

(
u(z)− u(x1)
d(x1, γn(t))

)
≤ u(γn(t))− u(x1)

d(x1, γn(t))

≤ r − t

d(x1, γn(t))
(−S+

u (x0, r)
) ≤ r − t

r + 1
n − t

(−S+
u (x0, r)

)

for all sucht’s. Here we used the facts thatd(x1, γn(t)) ≤ r + 1
n − t and that−S+

u (x0, r) ≤ 0. Note that for
each fixedt < r that is sufficiently close tor, γn(t) is in B(x0, r) ∩ B(x1, dist(x1,Ω)) for all sufficiently large
n. We fix sucht for now. Becauseu is Lipschitz continuous,S−u (x1, r − t) = limn→∞ S−u (x1, r + 1

n − t)).
Hence, asd(x1, γn(t)) ≤ r + 1

n − t ands 7→ S−u (x1, s) is nonincreasing, we finally obtain, by lettingn → ∞,
that

S−u (x1, r − t) = lim
n→∞

S−u (x1, r + 1
n − t)) ≤ lim sup

n→∞

(
S−u (x1, d(x1, γn(t)))

) ≤ (−S+
u (x0, r)

)

for each such fixedt < r. Letting t → r− givesS−u (x1) ≤ −S+
u (x0, r), which by Lemma 5.6 yields

S+
u (x1) = −S−u (x1) ≥ S+

u (x0, r).

Sinces 7→ S+
u (x1, s) is nondecreasing, we haveS+

u (x1, s) ≥ S+
u (x0, r) for all 0 < s < dist(x0, ∂Ω) − r, as

desired.

Recall that a metric space is said to be proper if every closed and bounded subset of that space is compact.

Proposition 5.8 Let(X, d) be a proper length space satisfying the weak Fubini property. Then every function
u of the classCC(Ω) is of class st-AMLEu(Ω).

P r o o f. We argue by contradiction and assume that a Lipschitz functionu is of the classCC(Ω), but is not
of class st-AMLEu(Ω). This means that there exists an open setV ⊂ Ω, a Lipschitz functionv andx0 ∈ V such
thatu = v on∂V and

Lipu(x0) > sup
x∈V

Lip v(x) ≥ 0.

Here we used Lemma 5.2. Define the pointsx1, x2, . . . inductively so thatd(xj , xj+1) = min{1, 1
2 dist(xj , ∂V }

and

S+
u (xj , d(xj , xj+1)) =

u(xj+1)− u(xj)
d(xj , xj+1)

, j = 0, 1, 2, . . . ;

such points exist because the “spheres”{z : d(xj , z) = r} are all non-empty (a consequence of the fact thatX is
a length space) and compact (a consequence of the assumption thatX is proper). By Lemma 5.7,

S+
u (xj+1, d(xj+1, xj+2)) ≥ S+

u (xj , d(xj , xj+1)),

Copyright line will be provided by the publisher
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and thus

u(xj+1)− u(xj) = S+
u (xj , d(xj , xj+1)) d(xj , xj+1)

≥ S+
u (x0) d(xj , xj+1) = Lip u(x0) d(xj , xj+1).

Summing up these inequalities gives

u(xm)− u(x0) =
m−1∑

j=0

(
u(xj+1)− u(xj)

)
≥ Lip u(x0)




m−1∑

j=0

d(xj , xj+1)


 for anym ∈ N.

SinceLip u(x0) > 0 andu(xm) − u(x0) ≤ 2 supx∈V u(x) < ∞, the sequence(xj) is a Cauchy sequence, and
thus it converges to a pointx∞ ∈ V . In fact, asd(xj , xj+1) = min{1, 1

2 dist(xj , ∂V }, we must havex∞ ∈ ∂V .
Moreover, by the continuity ofu, we have

u(x∞)− u(x0) ≥ Lipu(x0)




∞∑

j=0

d(xj , xj+1)


 . (5.2)

Next we sety0 = x0 and choose the pointsy1, y2, . . . inductively so thatd(yj , yj+1) = min{1, 1
2 dist(yj , ∂V }

and

S−u (yj , d(yj , yj+1)) =
u(yj+1)− u(yj)

d(yj , yj+1)
, j = 0, 1, 2, . . . .

As above, using Lemmas 5.6 and 5.7 we findy∞ ∈ ∂V such that

u(y∞)− u(x0) ≤ −Lipu(x0)




∞∑

j=0

d(yj , yj+1)


 . (5.3)

By combining (5.2) and (5.3) we obtain

u(x∞)− u(y∞) ≥ Lip u(x0)




∞∑

j=0

d(xj , xj+1) +
∞∑

j=0

d(yj , yj+1)


 .

On the other hand, as in the proof of estimate (5.1) in Lemma 5.4,

v(xj+1)− v(xj) ≤
(

sup
x∈V

Lip v(x)
)

d(xj , xj+1)

and

v(yj+1)− v(yj) ≤
(

sup
x∈V

Lip v(x)
)

d(yj , yj+1),

for all j, and therefore

v(x∞)− v(y∞) ≤
(

sup
x∈V

Lip v(x)
) 


∞∑

j=0

d(xj , xj+1) +
∞∑

j=0

d(yj , yj+1)


 .

SinceLipu(x0) > supx∈V Lip v(x), this implies thatv(x∞)− v(y∞) < u(x∞)− u(y∞), which is impossible
becausex∞, y∞ ∈ ∂V andu = v on∂V .
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