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Abstract. In this paper, we study the removability of a level set for the

solutions of quasilinear elliptic and parabolic equations of the second order.

We show, under rather general assumptions on the coefficients of the equation,

that if a function u ∈ C1(Ω) is a viscosity solution to the equation in the set

Ω \ {x : u(x) = 0},
then u is, in fact, a solution in the whole domain Ω. In addition to the linear

equations in non-divergence form with Lipschitz coefficients, our results cover

for example the p-Laplace equation, the minimal surface equation, the Burgers

equation, and the heat equation.

1. Introduction

For the Laplace equation the following removability property is valid (see [2],
[6], [19], [14]): Suppose that u is continuously differentiable in a domain Ω in the
Euclidean space IRn. If the function u is harmonic in the set where u 6= 0, then u is
harmonic in the whole Ω. Thus the level set {x ∈ Ω : u(x) = 0} can be “removed”.
The object of our work is this phenomenon for a very wide class of quasilinear
elliptic and parabolic partial differential equations of the second order.

Special cases for which our results hold are for example the minimal surface
equation

div

(
∇u√

1 + |∇u|2

)
= 0,

the p-Laplace equation

div(|∇u|p−2∇u) = 0, p ≥ 2,

and the increasingly popular infinity Laplace equation
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0.

These are all of the general form

(1.1)
n∑

i,j=1

Aij(x, u,∇u)
∂2u

∂xi∂xj
+B(x, u,∇u) = 0,

where the coefficients Aij and B are continuous in all their variables, and the
matrix A = (Aij) is symmetric and positive semidefinite. It is obviously necessary
to assume that B(x, 0, 0) = 0 in order to assure that u ≡ 0 is a solution. In the
case when also Aij(x, 0, 0) = 0 for every i, j = 1, . . . , n, the removability of the zero
level set is obtained in a rather straightforward manner. This assumption is not
necessary and can be abandoned provided that the coefficients Aij are independent

Date: November 17, 2004.

2000 Mathematics Subject Classification. Primary 35B60, 35J70, 35K55.

Key words and phrases. removability, quasilinear equations, viscosity solutions.

First author supported in part by the Academy of Finland, project #80566.
1



2 REMOVABILITY OF A LEVEL SET

of u and Lipschitz continuous in x. The exact formulation of our results is somewhat
involved and will be given in detail in Section 2 and in part of the parabolic case
in Section 5.

Since the equations we consider are allowed to be very degenerate, nonlinear and
of non-divergence form, the notions of classical solutions and distributional weak
solutions are not general enough for the purposes of this paper. We will instead
use the concept of viscosity solutions, assuming that the reader is at least some-
what familiar with this framework. It is a typical feature that all other reasonable
solutions, whatever their definition, are included in the class of viscosity solutions.
In particular, the classical solutions are exactly the smooth viscosity solutions and
in the case of equations in divergence form with sufficiently smooth coefficients the
distributional weak solutions and the viscosity solutions coincide. Hence we obtain
removability results for these classes of solutions as well.

The essential difficulty in proving that a level set is removable lies in the fact that
the size of this set is, in general, not known, at least not in advance. At the points
where the gradient of u does not vanish, the level set is locally a C1-hypersurface,
and this case can be dealt with quite easily. Instead of using a coordinate transfor-
mation as in [13], [16], which is suitable for equations in divergence form, we find an
argument similar to the proof of Hopf’s maximum principle convenient. Observe
that this establishes the removability of the entire level set if it is assumed that
A(x, 0, 0) = 0, because then the equation is clearly satisfied in the viscosity sense at
the critical points. In general, it is a more demanding task to show the removability
of the points at which ∇u = 0. However, the somewhat surprising relaxation given
in Theorem 4.2 says that no testing at all is needed at these points. They pass for
free so that the equation has to be verified only in the set {x ∈ Ω : ∇u(x) 6= 0}.
This is formulated in terms of what we call feeble viscosity solutions, for lack of a
better name, and the proof is based on a judicious choice of a penalization function
in connection with the use of the so-called maximum principle for semicontinuous
functions in [5].

Simple, essentially one dimensional examples show that the a priori regularity
assumption u ∈ C1(Ω) cannot be weakened to Lipschitz continuity. On the other
hand, an assumption like u ∈ C2(Ω) leads to total oversimplification. By regu-
larity theory the solutions of many important equations are, actually, of class C1,
indicating that the assumption is natural.

In addition to the case of harmonic functions, the removability of a level set has
been previously obtained at least for the solutions of certain linear elliptic equations
[19], [15]. In [13] Kilpeläinen proved the corresponding result for the p-harmonic
functions in the plane, and his result was later extended by the authors [11] to
higher dimensions. We are not aware of any results of this type in the parabolic
case.

Acknowledgments. We thank E. Malinnikova for informing us about the refer-
ence [19] and H. Hanche-Olsen for detecting a flaw in a previous version of the
manuscript.

Notation. For the reader’s convenience, we here list some notation that will be
used throughout the paper. For vectors ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ IRn,

ξ · η =

n∑

i=1

ξiηi

is the usual inner product, |ξ| = (ξ · ξ)1/2, and the tensor product ξ⊗ η is the n×n
matrix with the entries

(ξ ⊗ η)ij = ξiηj for 1 ≤ i, j ≤ n.
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By Sn×n we denote the (real) n × n symmetric matrices. This space is equipped
with the inner-product

X · Y := trace(XY ) =
n∑

i,j=1

XijYij

for X,Y ∈ Sn×n and the corresponding norm ‖X‖ := (X · X)1/2. Moreover, in
Sn×n there is a partial ordering: X ≤ Y if and only if Y −X is positive semidefinite,
that is, (Y −X)ξ · ξ ≥ 0 for every ξ ∈ IRn.

The gradient of a function u and its Hessian matrix consisting of the second

derivatives are denoted by ∇u and D2u = ( ∂2u
∂xi∂xj

)ij , respectively.

For a set A ⊂ IRn, ∂A and A denote the boundary and the closure of A, respec-
tively. Br(x) is the open ball with the center at x and radius r.

2. Definitions and statements of the results

We find it convenient to write equation (1.1) in the form

(2.1) −A(x, u,∇u) ·D2u−B(x, u,∇u) = 0.

The minus sign in front of the equation is a standard convention in the framework
of viscosity solutions. We assume that the coefficients at least satisfy the following
conditions:

(I) A = (Aij) is a symmetric and positive semidefinite matrix with continuous
entries Aij ,

(II) B is continuous and B(x, 0, 0) = 0 for all x ∈ Ω.

To be on the safe side, we give the definition of viscosity solutions.

Definition 2.1. An upper semicontinuous function u : Ω → IR is a viscosity
subsolution to (2.1) if, whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that

0 = u(x0)− φ(x0) > u(x)− φ(x) for all x 6= x0,

then
−A(x0, φ(x0),∇φ(x0)) ·D2φ(x0)−B(x0, φ(x0),∇φ(x0)) ≤ 0.

A lower semicontinuous function v : Ω→ IR is a viscosity supersolution to (2.1) if,
whenever x0 ∈ Ω and ψ ∈ C2(Ω) are such that

0 = v(x0)− ψ(x0) < v(x)− ψ(x) for all x 6= x0,

then
−A(x0, ψ(x0),∇ψ(x0)) ·D2ψ(x0)−B(x0, ψ(x0),∇ψ(x0)) ≥ 0.

Finally, u ∈ C(Ω) is a viscosity solution if it is both a viscosity subsolution and a
viscosity supersolution.

Observe that in the definition we associate to each point x0 ∈ Ω its own family of
test-functions touching from above (respectively, below), and that the family may
very well be empty.

A standard reference to the general theory of viscosity solutions is [5], see also
[4] and [7]. Here we merely record some facts that are relevant in the current study.
First, as mentioned already in the introduction, the notion of viscosity solutions
is consistent with the notion of classical solutions in the sense that u ∈ C2(Ω) is
a viscosity solution to (2.1) if and only if u satisfies the equation pointwise. This
follows easily by Calculus because A(x, u,∇u) is positive semidefinite. The rela-
tionship between viscosity solutions and distributional weak solutions for equations
in divergence form is more complicated. In the case of an Euler-Lagrange equation
of a variational problem with a convex integrand it is easy to see that distributional
weak solutions are viscosity solutions, see e.g. [1], [9]. The reverse inclusion can be
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obtained, roughly speaking, provided that the standard Dirichlet problem for the
divergence form equation admits a unique viscosity solution, see [12].

We now turn to the results of this paper. The statements below are about
the removability of the zero level set, but it is clear how one has to adjust the
assumptions in order to obtain similar conclusions for a generic level set {u = s}.
Our first theorem deals with the case where the critical points {x ∈ Ω : ∇u(x) = 0}
are trivially removable due to the fact that the equation is automatically satisfied
at these points. The proof is based on an argument similar to the classical Hopf’s
maximum principle, cf. [18], and is given in Section 3 below.

Theorem 2.2. Suppose, in addition to (I) and (II), that A(x, 0, 0) = 0 for every
x ∈ Ω. If u ∈ C1(Ω) is a viscosity solution to (2.1) in

Ω \ {x ∈ Ω : u(x) = 0},
then it is a viscosity solution in the whole Ω.

Observe that the only regularity assumption on the coefficients is continuity.
This theorem applies for example to the well-known p-Laplace equation

−div(|∇u|p−2∇u) = 0

in the range 2 < p <∞, in which case

A(x, s, ξ) = |ξ|p−2I + (p− 2)|ξ|p−4ξ ⊗ ξ,
and to its limit equation, the infinity Laplace equation −∆∞u = 0, for which

A(x, s, ξ) = ξ ⊗ ξ.
However, the ordinary Laplace equation is not covered by this theorem.

The rather restrictive condition A(x, 0, 0) = 0, which is not valid even for the
linear equations, can easily be relaxed in the case when A(x, u,∇u) does not depend
explicitly on u. In other words, A = A(x, ξ). We need to assume some local
regularity for the coefficient matrix A near ξ = 0. Let us denote by A the symmetric
positive semidefinite square root of A, that is, AA = A. We assume that

for every x0 ∈ Ω there exist δ > 0 and C > 0 such that

(2.2) ‖A(x, ξ)− A(y, ξ)‖2 ≤ C|x− y|
whenever x, y ∈ Bδ(x0) and |ξ| < δ.

Observe that since the mapping A 7→ A is Hölder continuous with exponent 1/2,
(2.2) holds if

‖A(x, ξ)−A(y, ξ)‖ ≤ C̃|x− y|
whenever x, y ∈ Bδ(x0) and |ξ| < δ.

Theorem 2.3. Suppose, in addition to (I) and (II), that the square root A(x, ξ)
satisfies condition (2.2). If u ∈ C1(Ω) is a viscosity solution to (2.1) in

Ω \ {x ∈ Ω : u(x) = 0},
then it is a viscosity solution in the whole Ω.

Theorem 2.3 follows from the proof of Theorem 2.2 and from a removability result
for the critical points. The latter is formulated and proved in Section 4 below.

Let us now analyze condition (2.2) in certain special cases. First, in the linear
case A(x, ξ) = A(x), (2.2) is satisfied if the coefficients of the equation (2.1) are
locally Lipschitz continuous. Also linear equations in divergence form like

−div(A(x)∇u(x)) = 0



REMOVABILITY OF A LEVEL SET 5

are within the scope of our results if A ∈ C1(Ω), because then they can be written
as

−A(x) ·D2u(x)−
n∑

i=1

(∂Ai(x)

∂xi
· ∇u(x)

)
= 0,

where Ai denotes the ith row of A. Observe that the lower order term vanishes at
the points where ∇u(x) = 0.

Another interesting special class is A(x, ξ) = A(ξ), in which case (2.2) is trivially
true. Thus Theorem 2.3 applies for example to the minimal surface equation

−∆u+
(∇u⊗∇u) ·D2u

1 + |∇u|2 = 0,

as well as to all other equations of the form

−div F (∇u) = 0

provided F : IRn → IRn is C1 and the matrix (∂Fi∂ξj
)ij is positive semidefinite. Levi’s

equation −A(∇u) ·D2u = 0 with

A(ξ) =




1 + ξ2
3 0 ξ3ξ1 − ξ2

0 1 + ξ2
3 ξ3ξ2 + ξ1

ξ3ξ1 − ξ2 ξ3ξ2 + ξ1 ξ2
1 + ξ2

2


 ,

see e.g. [3], provides an example that is of non-divergence form.
Finally, we want to point out also that our arguments can be even applied to

equations that are singular at the points where ∇u = 0. The notion of feeble
viscosity solution that we define and utilize in Section 4 adapts naturally to these
equations and it follows from the proof of Theorem 2.2 that a level set of any
continuously differentiable feeble viscosity solution of (2.1) is removable, even if
(2.1) is singular. This observation is significant, because for some singular equations
in divergence form it can be shown that feeble viscosity solutions and distributional
weak solutions coincide. A primary example of this is the p-Laplace equation

−div(|∇u|p−2∇u) = 0, 1 < p <∞,
which is singular for 1 < p < 2. In this case the proof of equivalence is given in
[12], and the argument therein can be adjusted to cover various other equations as
well. See also [8] and [17].

Remark 2.4. The a priori regularity assumption u ∈ C1(Ω) is optimal in both
theorems above in the sense that the conclusion is not true in general for Lipschitz
functions. To illustrate this, let us suppose B(x, s, ξ) ≡ 0 and that there exists
ξ0 6= 0 such that

A(x, 0, ξ0)ξ0 · ξ0 > 0

for all x ∈ IRn for which x · ξ0 = 0; this condition holds for example in the case of
the Laplacian for any ξ0 6= 0. Let

u(x) = 2|x · ξ0|.
Then D2u(x) = 0 in IRn \ {x : x · ξ0 = 0}, which implies that u is a viscosity
solution to (2.1) in IRn \ {x : u(x) = 0}. However, if

φ(x) = x · ξ0 +
1

2
(ξ0 ⊗ ξ0)x · x,

then u(x) = φ(x) = 0 whenever x · ξ0 = 0 and u ≥ φ in some open neighborhood of
{x ∈ IRn : x · ξ0 = 0}, but

−A(x, φ(x),∇φ(x)) ·D2φ(x) = −A(x, 0, ξ0)ξ0 · ξ0 < 0

if x · ξ0 = 0. Thus u is not a viscosity supersolution of (2.1) in the whole IRn.
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Another example displaying the same feature can be constructed using the eigen-
functions of the Laplace operator. Let λ2 denote the second eigenvalue of a bounded
domain Ω and let ϕ2 6≡ 0 be any eigenfunction associated to λ2. For α, β > 0 we
set

v = αϕ+
2 − βϕ−2 ,

where ϕ+
2 = max{ϕ2, 0} and ϕ−2 = −min{0, ϕ2} are the positive and negative part

of ϕ2. Then clearly −∆v = λ2v in the set {x ∈ Ω : v(x) 6= 0}, but, in general, v
does not satisfy the equation in the whole Ω. Indeed, v is orthogonal to the first
eigenfunction ϕ1 if and only if α = β. Observe that in the case of this eigenvalue
equation the zero level set has a special role because u ≡ 0 is the only constant
functions that satisfies the equation.

Remark 2.5. Although Theorems 2.2 and 2.3 are formulated for the viscosity solu-
tions of (2.1), we actually prove the removability also for the viscosity subsolutions
and the viscosity supersolutions. More precisely, it follows from our proofs that
under the assumptions of either theorem, if u ∈ C1(Ω) is a viscosity subsolution
(respectively, supersolution) to (2.1) in

Ω \ {x ∈ Ω : u(x) = 0},
then it is a viscosity subsolution (supersolution) to (2.1) in the whole Ω.

3. The non-critical case

In this section, we prove Theorem 2.2. The argument below establishes the
removability of the set

{x ∈ Ω : u(x) = 0 and ∇u(x) 6= 0},
and by the assumption

(3.1)

{
A(x, 0, 0) = 0
B(x, 0, 0) = 0

for every x ∈ Ω,

this is enough for the conclusion.

Proof of Theorem 2.2. The proof is indirect. Suppose the conclusion of the the-
orem is not true. Then u cannot be both a viscosity subsolution and a viscosity
supersolution. We may assume, without loss of generality, that u is not a viscosity
subsolution of (2.1). This means that there exist a point x̂ ∈ Ω and a function
φ ∈ C2(Ω) such that u(x̂) = φ(x̂) = 0, u ≤ φ in Ω, and

(3.2) −A(x̂, 0,∇φ(x̂)) ·D2φ(x̂)−B(x̂, 0,∇φ(x̂)) > 0.

By (3.1), this implies that ∇φ(x̂) 6= 0. Using continuity, the assumption that
u ∈ C1(Ω), and the fact that ∇(u− φ) vanishes at x̂, we conclude that there exist
a small ball Br(x̂) of radius r > 0 and center at x̂ and a constant c > 0 such that

(3.3)




|∇φ(x)| ≥ c
|∇u(x)| ≥ c
−A(x, φ,∇φ) ·D2φ−B(x, φ,∇φ) ≥ c

in Br(x̂).

Next we define a linear differential operator L by setting

Lv(x) := −A(x) ·D2v(x) − f(x),

where

A(x) = A(x, u(x),∇u(x))

and

f(x) = B(x, u(x),∇u(x))
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are continuous in Ω. Then Lu = 0 in Ω \ {u = 0} in the viscosity sense. Indeed, if
ψ ∈ C2(Ω) touches u from above (below) at a point x ∈ Ω \ {u = 0}, then

Lψ(x) = −A(x, ψ,∇ψ) ·D2ψ(x)−B(x, ψ,∇ψ) ≤ 0, (respectively, ≥ 0)

since u(x) = ψ(x) and ∇u(x) = ∇ψ(x). Moreover, because
{
‖A(x)−A(x, φ,∇φ)‖ → 0
|f(x)−B(x, φ,∇φ)| → 0

as x→ x̂

and (3.3) holds, there exists a small ε > 0 such that Lφ ≥ c
2 in Bε(x̂). Since the

equation is degenerate elliptic, this holds also in the viscosity sense.
Let θ = φ− u. Then

(3.4)




−A(x) ·D2θ ≥ c

2 > 0 in Bε(x̂) \ {u = 0} in the viscosity sense,
θ(x̂) = 0,
θ(x) ≥ 0 in Bε(x̂).

In particular, ∇θ(x̂) = 0. Since ∇φ(x̂) 6= 0 and φ ∈ C2(Ω), the implicit function
theorem implies that the level set {x : φ(x) = 0} is locally a graph of a C2 function.
This in turn implies that there exists a ball Bρ(z) contained in the set {φ < 0}
tangent to the level set {φ = 0} at the point x̂. More precisely, we have

Bρ(z) ⊂
(
{φ < 0} ∩Bε(x̂)

)
⊂
(
{u < 0} ∩Bε(x̂)

)

and
∂Bρ(z) ∩ {φ = 0} = ∂Bρ(z) ∩ {u = 0} = {x̂},

see Figure 3.1.

PSfrag replacements

z

x̂

Bρ(z)

Bε(x̂)

ν(x̂)

{u = 0}

{φ = 0}

Figure 3.1

Let
w(x) =

σ

2

(
ρ2 − |x− z|2

)
, σ > 0.

Then

(3.5) −A(x) ·D2w(x) = σ trace(A(x)) ≤ c

4
in Bρ(z)
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if σ is chosen small enough. Notice that w = 0 ≤ θ on ∂Bρ(z). We claim that
w ≤ θ also in Bρ(z). Indeed, if

θ(y0)− w(y0) = min
y∈Bρ(z)

(
θ(y)− w(y)

)
< 0

for some y0 ∈ Bρ(z), i.e., w + (θ(y0)− w(y0)) touches θ from below at y0, then by
(3.4) we have

−A(y0) ·D2w(y0) ≥ c

2
,

a contradiction with (3.5). Hence w ≤ θ in Bρ(z). Since θ(x̂) = w(x̂) = 0, we must
have

∂θ

∂ν
(x̂) ≤ ∂w

∂ν
(x̂) = −σρ < 0,

where ν denotes the exterior normal to Bρ(z) at x̂. But this is impossible, because
∇θ(x̂) = 0 by (3.4). We conclude that u is a solution to (2.1) in Ω. �

Remark 3.1. A quick look at the proof above reveals that our argument relies to
a great extent on the linearization of (2.1) near x̂. Due to the quasilinear struc-
ture, the coefficients of the linearized equation are independent of the second order
derivatives of u (which, of course, are not even known to exist under the assump-
tions of the theorem). The situation is quite different for a general fully nonlinear
equation.

4. The critical case

In the proof of Theorem 2.2, we used the assumption (3.1), that is, Aij(x, 0, 0) =
B(x, 0, 0) = 0, only to deduce from (3.2) that the gradient of the test-function φ
does not vanish at the point x̂, where u−φ has a local maximum. Next we will show
that a similar conclusion can be made even without (3.1) provided the coefficients
Aij of the equation are sufficiently nice.

So the task at hand is to show that under suitable assumptions, viscosity subso-
lutions and supersolutions of (2.1) can be detected using only test-functions whose
gradient does not vanish. To formalize this, we introduce the notions of feeble
viscosity subsolutions and supersolutions.

Definition 4.1. An upper semicontinuous function u : Ω→ IR is a feeble viscosity
subsolution to (2.1) if, whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that

(i) 0 = u(x0)− φ(x0) > u(x)− φ(x) for all x 6= x0,
(ii) ∇φ(x0) 6= 0,

then

(4.1) −A(x0, φ(x0),∇φ(x0)) ·D2φ(x0)−B(x0, φ(x0),∇φ(x0)) ≤ 0.

A lower semicontinuous function v : Ω → IR is a feeble viscosity supersolution to
(2.1) if, whenever x0 ∈ Ω and ψ ∈ C2(Ω) are such that

(i) 0 = v(x0)− ψ(x0) < v(x)− ψ(x) for all x 6= x0,
(ii) ∇ψ(x0) 6= 0,

then

(4.2) −A(x0, ψ(x0),∇ψ(x0)) ·D2ψ(x0)−B(x0, ψ(x0),∇ψ(x0)) ≥ 0.

Finally, u ∈ C(Ω) is a feeble viscosity solution if it is both a feeble viscosity subso-
lution and a feeble viscosity supersolution.
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Observe that the only difference to the standard definition given in Definition
2.1 is that nothing is required if it so happens that ∇φ(x0) = 0 (respectively,
∇ψ(x0) = 0). In order to avoid any misinterpretations, we will sometimes talk
about ordinary viscosity solutions when we refer to Definition 2.1. Our aim is to
show that under suitable assumptions on the coefficients, the feeble and the ordinary
viscosity solutions coincide. Notice that this is evidently the case if Aij(x, s, 0) =
B(x, s, 0) = 0 for all (x, s) ∈ Ω × IR. On the other hand, since every constant
function is always a feeble viscosity solution, the two definitions can be equivalent
only if B(x, s, 0) = 0 for all x and s.

For the equivalence of the two notions, we require that A is independent of u and
the structural assumption from Section 2 is valid, that is, for every x0 ∈ Ω there
exist δ > 0 and C > 0 such that

(4.3) ‖A(x, ξ)− A(y, ξ)‖2 ≤ C|x− y|
whenever x, y ∈ Bδ(x0) and |ξ| < δ. We remind the reader that A denotes the
positive semidefinite square root of A.

Theorem 4.2. Suppose that A(x, ξ) satisfies (4.3) and that B(x, s, 0) = 0 for all
x ∈ Ω and s ∈ IR. Then every continuous feeble viscosity subsolution to (2.1) is an
ordinary viscosity subsolution.

Proof. We argue by contradiction. If the conclusion is false for a feeble viscosity
subsolution u ∈ C(Ω), then there exist x̂ ∈ Ω and φ ∈ C2(Ω) so that u(x̂) = φ(x̂),
u− φ has a strict (global) maximum at x̂, and

(4.4) −A(x̂,∇φ(x̂)) ·D2φ(x̂)−B(x̂, φ(x̂),∇φ(x̂)) = µ > 0.

Observe that necessarily ∇φ(x̂) = 0, because u is assumed to be a feeble viscosity
subsolution. The strategy of the proof is, roughly speaking, to produce for a suitable
perturbation of u− φ a local maximum point that is near x̂ and at which there is
a test-function with a non-vanishing gradient, and then to derive a contradiction.

We begin by doubling the variables and adding an adequate penalization. Con-
sider the functions

wj(x, y) = u(x)− φ(y)− ψj(x, y), j = 1, 2, . . . ,

where

ψj(x, y) = j
q |x− y|q, q > 2,

and let (xj , yj) be a point where wj achieves its maximum in Ω× Ω. By standard
arguments, see [5] or [4],

ψj(xj , yj)→ 0 and (xj , yj)→ (x̂, x̂) as j →∞.

In particular, for j sufficiently large, xj and yj are both interior points of Ω. Since

(4.5) u(x)− φ(y)− ψj(x, y) ≤ u(xj)− φ(yj)− ψj(xj , yj)
for all x, y ∈ Ω, we obtain by choosing x = xj that

φ(y) ≥ −ψj(xj , y) + φ(yj) + ψj(xj , yj)

for all y ∈ Ω. Let us denote the right-hand side of the above inequality as θj , that
is,

θj(y) = −ψj(xj , y) + φ(yj) + ψj(xj , yj).

Since φ− θj has a (global) minimum at yj ,

∇φ(yj) = ∇θj(yj) = j|zj |q−2zj ,

D2φ(yj) ≥ D2θj(yj) = −j|zj |q−2I − j(q − 2)|zj |q−4zj ⊗ zj ,
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where we have denoted zj = xj − yj . Now, if we had xj = yj , then ∇φ(yj) = 0 and
D2φ(yj) ≥ 0, which would imply

−A(yj ,∇φ(yj)) ·D2φ(yj)−B(yj , φ(yj),∇φ(yj)) = −A(yj , 0) ·D2φ(yj) ≤ 0.

Since yj → x̂ as j → ∞ and φ ∈ C2(Ω), this contradicts (4.4) for j large enough.
Thus zj 6= 0, and consequently

ηj := ∇xwj(xj , yj) = −∇ywj(xj , yj) = j|zj |q−2zj

is a non-zero vector, at least for all j sufficiently large. On the other hand, since
ηj = ∇φ(yj)→ ∇φ(x̂) = 0 as j →∞, we have

(4.6) j|zj |q−1 → 0 as j →∞,

which improves the initial estimate on the rate of convergence for the difference
zj = xj − yj .

Next we will apply “the maximum principle for semicontinuous functions”1 from
[5]. For that purpose, we need to introduce some notation. Given a function
v : Ω→ IR and z ∈ Ω, we define the “semijets” of v at z by setting

J2,+v(z) =
{

(∇ψ(z), D2ψ(z)) : ψ ∈ C2(Ω), v − ψ has a local maximum at z
}
,

and

J2,−v(z) =
{

(∇ψ(z), D2ψ(z)) : ψ ∈ C2(Ω), v − ψ has a local minimum at z
}
.

Note that this is not the standard way to define the semijets. Nevertheless, it
yields precisely the same set-valued functions as the usual definition in [5], [4],
see e.g. Proposition 1 in [7]. In addition to jets, we need their closures. We say

that (p,X) ∈ J2,±
v(z) if there exists zk ∈ Ω and (pk, Xk) ∈ J2,±v(zk) such that

(zk, v(zk), pk, Xk) → (z, v(z), p,X) as k → ∞. The relevance of these concepts in
the theory of viscosity solutions is quite clear. Indeed, it is easy to see that an
upper semicontinuous function v is an ordinary viscosity subsolution to (2.1) if and
only if

−A(x, v(x), p) ·X −B(x, v(x), p) ≤ 0 for all x ∈ Ω and (p,X) ∈ J 2,+
v(x).

An analogous remark naturally holds for the supersolutions. We refer the reader
to [4] and [5] for further properties of jets.

Now we are ready to employ the maximum principle for semicontinuous func-
tions. Since (xj , yj) is a local maximum point of wj(x, y), this maximum principle
implies that there exist n× n symmetric matrices Xj , Yj such that

(4.7)
(ηj , Xj) ∈ J

2,+
u(xj),

(ηj , Yj) ∈ J
2,−

φ(yj),

and

(4.8)

(
Xj 0
0 −Yj

)
≤ D2ψj(xj , yj) +

1

j

[
D2ψj(xj , yj)

]2
.

Recalling the definition of ψj , (4.8) can be rewritten as
(
Xj 0
0 −Yj

)
≤ j(|zj |q−2 + 2|zj |2q−4)

(
I −I
−I I

)

+ j(q − 2)(|zj |q−4 + 2q|zj |2q−6)

(
zj ⊗ zj −zj ⊗ zj
−zj ⊗ zj zj ⊗ zj

)
.

1This is also known as “the Theorem on Sums”.
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By evaluating the corresponding quadratic forms at

(
ξ
ζ

)
∈ IR2n, we obtain

Xjξ · ξ − Yjζ · ζ ≤ j
[
|zj |q−2 + 2|zj |2q−4

]
|ξ − ζ|2

+ j(q − 2)
[
|zj |q−4 + 2q|zj |2q−6

]
(zj · (ξ − ζ))2

≤ j
[
(q − 1)|zj |q−2 + 2(q − 1)2|zj |2(q−2)

]
|ξ − ζ|2

(4.9)

for all ξ, ζ ∈ IRn.
Next we use (4.7). Recalling that ηj 6= 0 and the assumption that u is a feeble

viscosity subsolution of (2.1), we have

0 ≤ A(xj , ηj) ·Xj +B(xj , u(xj), ηj)

=

n∑

i=1

(
XjAi(xj , ηj) · Ai(xj , ηj)

)
+ o(1),

where Ai(xj , ηj) denotes the ith column of the symmetric square root of A(xj , ηj).
The estimate on the lower order term B(xj , u(xj), ηj) follows from the fact that
(xj , u(xj), ηj) → (x̂, u(x̂), 0) as j → ∞ and the assumption B(x, t, 0) = 0. On the
other hand, by (4.4),

0 < µ/2 ≤ −A(yj , ηj) · Yj −B(yj , φ(yj), ηj)

= −
n∑

i=1

(
YjAi(yj , ηj) · Ai(yj , ηj)

)
+ o(1)

for all j large enough. Hence, by using the structural assumption (4.3) together
with (4.9), we obtain

0 <
µ

2
≤

n∑

i=1

(
XjAi(xj , ηj) · Ai(xj , ηj)− YjAi(yj , ηj) · Ai(yj , ηj)

)
+ o(1)

≤ j
[
(q − 1)|zj |q−2 + 2(q − 1)2|zj |2(q−2)

]
‖A(xj , ηj)− A(yj , ηj)‖2 + o(1)

≤ Cj|zj |q−1 + o(1)

(4.10)

for some constant C independent of j. By (4.6), the right hand side tends to zero
as j →∞, and thus we have finally reached a contradiction. �

Remark 4.3. Although Theorem 4.2 above is formulated for continuous feeble
viscosity subsolutions, the continuity assumption does not play a really significant
role in the proof. In fact, the fact that u ∈ C(Ω) was used only to guarantee that
u(xj)→ u(x̂) = φ(x̂) as j →∞, which in turn is needed in order to conclude that
B(xj , u(xj), ηj) tends to zero as j →∞. Thus the conclusion of the theorem holds
for any feeble viscosity subsolution if we assume, for example, that the lower order
term B(x, s, ξ) does not depend on the variable s.

For continuously differentiable solutions of (2.1), Theorem 4.2 can be reformu-
lated as a removability result:

Corollary 4.4. Suppose that the coefficient matrix A(x, ξ) satisfies (4.3) and that
B(x, s, 0) = 0 for all x ∈ Ω and s ∈ IR. If u ∈ C1(Ω) is a viscosity solution to (2.1)
in the set

Ω \ {x ∈ Ω : ∇u(x) = 0},
then u is a viscosity solution in the whole Ω.
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Proof. Since u is an ordinary viscosity solution to (2.1) in {x ∈ Ω : ∇u(x) 6= 0}, it
is a feeble viscosity solution in Ω. Indeed, if a test-function φ ∈ C2(Ω) has a non-
vanishing gradient at a local maximum (respectively, minimum) point x̂ of u − φ,
then

∇u(x̂) = ∇φ(x̂) 6= 0,

and thus x̂ belongs to the open subset of Ω where (4.1) (respectively, (4.2)) is
already known to hold. The claim then follows immediately from Theorem 4.2 and
its natural counterpart for supersolutions. �

By combining Corollary 4.4 with the proof of Theorem 2.2 we obtain Theorem
2.3. Indeed, the non-critical points in the level set are removable by the argument
in Section 3, and Corollary 4.4 takes care of the critical points. Observe that if it is
assumed that u is a viscosity subsolution in Ω \ {x : u(x) = 0}, then the point x̂ in
(4.4) necessarily lies on the zero level set. Thus, by continuity, it suffices to assume
B(x, 0, 0) = 0 for all x ∈ Ω, and this is precisely what was assumed in Theorem 2.3.

5. Parabolic equations

It should be noted that certain parabolic equations, for example the heat equa-
tion ut−∆u = 0, are included in Theorems 2.2 and 2.3, provided that we interpret
the concept of a parabolic viscosity solution correctly. Consider the equation

(5.1) ut = A(x, t, u,∇u) ·D2
xu+B(x, t, u,∇u)

in an open set O ⊂ IRn+1. Denoting Du = (∇u, ut) ∈ IRn+1 and z = (x, t), (5.1)
can be written as

(5.2) −Ã(z, u,Du) ·D2
x,tu− B̃(z, u,Du) = 0,

where B̃(z, u,Du) = B(x, t, u,∇u)− ut and

Ãij(z, u,Du) =

{
Aij(x, t, u,∇u), if 1 ≤ i, j ≤ n
0, if i = n+ 1 or j = n+ 1.

If the coefficients A and B satisfy (3.1) ( or (2.2) and B(x, t, 0, 0) = 0 for all
(x, t) ∈ O), then Theorem 2.2 (respectively, Theorem 2.3) clearly applies to (5.2)
and we may conclude that the level set {u = 0} is removable for u ∈ C1(O). We
want to emphasize that the C1 assumption is on both x and t; in particular, the
time derivative ut is assumed to be continuous.

The only problem in this argument is the interplay between parabolic and elliptic
viscosity solutions. More precisely, when dealing with the parabolic equations it is
customary to emphasize the special role of the time variable t either by allowing test-
functions φ(x, t) that are only C1 with respect to t (cf. [4], [5]) or by determining
the admissibility of a test-function at (x̂, t̂) based only on what happens prior to
the time t̂ (cf. [10], [12]). In practical terms this means, in particular, that every
parabolic viscosity solution of (5.1) is automatically an elliptic viscosity solution to
(5.2) since the number of admissible test-functions is smaller in the elliptic case.
However, for the removability result we need also the converse implication. But
that is easily obtained by using a mollification argument, and thus we conclude

Theorem 5.1. Suppose that the coefficient matrix A(x, t, s, ξ) satisfies either (3.1)
or (2.2) and that B(x, t, 0, 0) = 0 for all (x, t) ∈ O. If u ∈ C1(O) is a parabolic
viscosity solution (as defined in [4], [5]) to (5.1) in

O \ {x ∈ O : u(x) = 0},
then it is a parabolic viscosity solution in O.
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Theorem 5.1 applies, for example, to the heat equation

ut = ∆u

and Burgers’s equation
ut = uux + uxx.

Observe also that the remarks made above in Section 2 concerning equations in
divergence form, singular equations and distributional solutions have their natural
counterparts in the parabolic case (cf. [12]).
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